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CHAPTER 1

Run the examples

The code in the examples directory demonstrates how to create and control servers and clients for all three protocols:
CSS-CII, CSS-TS and CSS-WC.

• WallClockServer.py and WallClockClient.py

• CIIServer.py and CIIClient.py

• TSServer.py and TSClient.py

• TVDevice.py

There are instructions below on how to run the examples and see them interact with each other.

See the sources here: on github

1.1 WallClockServer.py and WallClockClient.py

1.1.1 Get started

The WallClockServer and WallClockClient examples use the library to implement a simple server and client for the
CSS-WC protocol.

First start the server, specifying the host and IP to listen on:

$ python examples/WallClockServer.py 127.0.0.1 6677

Leave it running in the background and start a client, telling it where to connect to the server:

$ python examples/WallClockClient.py 127.0.0.1 6677

3
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Note: The wall clock protocol is connectionless (it uses UDP) This means the client will not report an error if you
enter the wrong IP address or port number.

Watch the “dispersion” values which indicate how much margin for error there is in the client’s wall clock estimate. If
the value is very large, this means it is not receiving responses from the server.

1.1.2 How they work

WallClockServer.py [source]

It works by instantiating a WallClockServer object and providing that object with a clock object to be used as
the Wall Clock that is to be served.

At the command line you can override default options for the ip address and port the server binds to; the maximum
frequency error it reports and whether it sends “follow-up” responses to requests.

Use the --help command line option for usage information.

WallClockClient.py [source]

It works by instantiating a WallClockClient object and plugs into that object a
LowestDispersionCandidate algorithm object that adjusts a TunableClock representing the Wall
Clock.

At the command line you must specify the host and port of the Wall Clock server. Default options can be overridden
for the IP address and port that the client listens on.

Use the --help command line option for usage information.

1.2 CIIServer.py and CIIClient.py

1.2.1 Get started

The CIIServer and CIIClient examples implement the CSS-CII protocol, with the server sharing some pretend CII
status information with the client.

First start the server:

$ python examples/CIIServer.py

The server listens on 127.0.0.1 on port 7681 and accepts WebSocket connections to ws://<ip>:<port>/cii.

Leave it running in the background and connect using the client and see how the CII data is pushed by the server
whenever it changes:

$ python examples/CIIClient.py ws:/127.0.0.1:7681/cii
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1.2.2 How they work

CIIServer.py [source]

It works by setting up a web server and the ws4py plug-in for cherrypy that provides WebSockets support. It then
instantiates a CIIServer and mounts it into the cherrypy server at the URL resource path “/cii”.

While the server is running, it pretends to be hopping between a few different broadcast channels every 7 seconds,
with a 2 second “transitioning” period on each hop.

This is an artificially simple example and does not provide values for most properties of the CII message - such as a
MRS URL, or any URLs for a WC or TS endpoints.

It does not do any media presentation, but just provides a CSS-CII server with some pretend data.

This server, by default, serves on port 7681 and provides a CSS-CII service at the URL resource path /cii. It can
therefore be connected to using the WebSocket URL “ws://<host>:7681/cii” e.g. “ws://127.0.0.1:7681/cii”. Command
line options can be used to override these defaults and to reduce the amount of logging output.

Use the --help command line option for more detailed usage information.

CIIServer.py [source]

It works by instantiating a CIIClient and attaching handler functions to be notified of when connection and dis-
connection occurs and of changes to the CII information being pushed from the server.

At the command line you must specify:

• the WebSocket URL of the CSS-CII server, in the form ws://<host>:<port>/<path>

Command line options can be used to reduce the amount of logging output.

Use the --help command line option for usage information.

1.3 TSServer.py and TSClient.py

1.3.1 Get started

The TServer and TSClient examples implement the CSS-TS protocol, with the server pretending to have a few different
timelines for a DVB broadcast service (where the content ID is a DVB URL).

First start the server:

$ python examples/TSServer.py

The server listens on 127.0.0.1 on port 7681 and accepts WebSocket connections to ws://<ip>:<port>/ts. It also
includes a wall clock server, also on 127.0.0.1 on port 6677.

Leave it running in the background and connect using the client and see how the client is able to synchronise and
periodically print an estimate of the timeline position (converted to units of seconds):

$ python examples/TSClient.py ws://127.0.0.1:7681/ts udp://127.0.0.1:6677 "dvb://"
→˓"urn:dvb:css:timeline:pts" 90000

Here we have told it to request a timeline for whatever content the server thinks it is showing provided that the content
ID begins with “dvb://”. Assuming that matches, then the timeline is to be a PTS timeline, which ticks at 90kHz (the
standard rate of PTS in an MPEG transport stream).

1.3. TSServer.py and TSClient.py 5
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1.3.2 How they work

TSServer.py [source]

It works by setting up a web server and the ws4py plug-in for cherrypy that provides WebSockets support. It then
instantiates a TSServer and mounts it into the cherrypy server at the URL resource path “/ts”. It also includes a wall
clock server.

It does not play any media, but instead serves an imaginary set of timelines.

It creates clock objects to represent timelines and the wall clock. SimpleClockTimelineSource objects are
used to interface the clocks as sources of timelines to the TS server object.

It has a hardcoded DVB URL as the content ID (displayed when you start it running) and provides the following
timelines:

• “urn:dvb:css:timeline:pts” ... a PTS timeline

• “urn:dvb:css:timelime:temi:1:1” ... a TEMI timeline ticking at 1kHz

• “urn:dvb:css:timelime:temi:1:5” ... a TEMI timeline ticking at 1kHz, that toggles availability every 10 seconds

• “urn:dvb:css:timelime:temi:1:2” ... the same, but it takes 10 seconds for the server to begin providing this
timeline after a client first requests it

• “urn:pydvbcss:sporadic” ... a meaningless timeline whose availability toggles every 10 seconds.

The PTS and TEMI timelines both pause periodically and have their timing tweaked by a fraction of a second. The
“sporadic” timeline shows how the protocol supports having timelines appear (become available) and disappear (be-
come unavailable) while a client is connected.

By default, this server serves at 127.0.0.1 on port 7681 and provides a CSS-TS service at the URL
ws://127.0.0.1:7681/ts. It also provides a wall clock server bound to 0.0.0.0 on UDP port 6677. Command line
options can be used to override these defaults and to reduce the amount of logging output.

Use the --help command line option for more detailed usage information.

TSClient.py [source]

It works by implementing both a wall clock client and a CSS-TS client. A TSClientClockController object is
instantiated and provided with a CorrelatedClock object to represent the synchronisation timeline. The controller
adjusts the clock object to match the timeline information coming from the server.

At the command line you must specify:

• the WebSocket URL of the CSS-TS server, in the form ws://<host>:<port>/<path>

• a udp://<host>:<port> format URL for the Wall Clock server

• The content ID stem and timeline selector to be used when requesting the timeline

• The tick rate of the timeline.

Default options can be overridden for the IP address and port that the Wall Clock client binds to and to reduce the
amount of logging output.

Use the --help command line option for usage information.

6 Chapter 1. Run the examples
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1.4 TVDevice.py

1.4.1 Get started

This is a very simple example of a server running all three protocols (CSS-WC, CSS-TS and CSS-CII). It pretends to
be showing a DVB broadcast service and able to provide a PTS or TEMI timeline for it.

First start the server:

$ python examples/TVDevice.py

While we leave it running in the background, we can try to interact with it using the various example clients described
above.

By default it provides a wall clock server on all interfaces on port 6677

$ python examples/WallClockClient.py 127.0.0.1 6677

... and a CSS-CII server that can be reached at ws://{{host}}:7681/cii where {{host}} is any interface, including
127.0.0.1.

$ python examples/CIIClient.py ws:/127.0.0.1:7681/cii

... and a CSS-TS server that can be reached at ws://{{host}}:7681/ts

$ python examples/TSClient.py ws://127.0.0.1:7681/ts udp://127.0.0.1:6677 "dvb://"
→˓"urn:dvb:css:timeline:temi:1:1" 1000

1.4.2 How it works

TVDevice.py [source]

This example works by setting up a web server and the ws4py plug-in for cherrypy that provides WebSockets support.
It then instantiates a TSServer and CIIServer and mounts it into the cherrypy server. It also includes a wall clock
server.

It does not play any media, but instead serves an imaginary set of timelines and pretends to be presenting a broadcast
service.

It creates clock objects to represent timelines and the wall clock. SimpleClockTimelineSource objects are
used to interface the clocks as sources of timelines to the TS server object.

It has a hardcoded DVB URL as the content ID (displayed when you start it running) and provides the following
timelines:

• urn:dvb:css:timeline:pts ... a PTS timeline

• urn:dvb:css:timelime:temi:1:1 ... a TEMI timeline ticking at 1kHz that toggles availability every 30 seconds

The PTS and TEMI timelines both start ticking up from zero the moment the server starts.

By default, this server binds to 0.0.0.0 on port 7681 and provides a CSS-CII service at the URL ws://{host}:7681/cii
and a CSS-TS service at the URL ws://{host}:7681/ts. It also provides a wall clock server bound to 0.0.0.0 on UDP
port 6677.

The CII service will provide URLs for the TS and WC endpoints that match the host name on which the

Command line options can be used to override these defaults and to reduce the amount of logging output.

1.4. TVDevice.py 7
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Use the --help command line option for more detailed usage information.
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CHAPTER 2

DVB CSS Protocol modules

Module: dvbcss.protocol

The dvbcss.protocol module contains classes to implement the CSS-CII, CSS-TS and CSS-WC protocols. For
each protocol there are objects to represent the messages that flow across the protocols and classes that implement
clients and servers for the protocols.

2.1 CSS-CII protocol

2.1.1 CSS-CII Protocol introduction

Here is a quick introduction to the CSS-CII protocol. For full details, refer to the DVB specification ETSI 103
286 part 2.

The CSS-CII protocol is for sharing the server’s (e.g. TV’s) current “Content Identifier and other Information” (yes
really!) with the client (e.g. companion). It also includes the URL of the CSS-TS and CSS-WC servers so the client
knows where to find them.

CII comprises a set of defined properties. The server pushes state update messages containing some or all properties
(at minimum those that have changed). How often these messages are pushed and which properties are included are
up to the server.

It is a WebSockets based protocol and messages are in JSON format.

• Sequence of interaction

• CII message properties
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Sequence of interaction

The client is assumed to already know the WebSocket URL for the CSS-CII server (for example: because the TV
chooses to advertise it via a network service discovery mechanism).

1. The client connects to the CSS-TS server. Either this is refused via an HTTP status code response, or it is
accepted.

2. The server immediately responds with a first CII state update message. This contains (at minimum) all properties
whose values are not null.

3. The server can re-send the CII state update message as often as it wishes. At minimum it will do so when one
or more of the properties have changed value. The server will, at minimum, include the properties that have
changed, but could also include others in the message.

This protocol is a state update mechanism. The client is locally mirroring the state of the TV by remembering the most
recent values received for each of the properties.

At the start, the client assumes all properties have the value null. Then, when a message is received the client updates
its mirror of the TV state:

• If a property is included in the message (even if its value is null), then this is the new value for that property.

• If a property is not included in the message, then its value has not changed.

Any messages sent by the client are ignored by the server.

CII message properties

Every message sent by the server is a CII message and consists of a single JSON object with zero, one, more or all of
the following properties:

• protocolVersion - currently “1.1” and must be included in the first message sent by the server after the
client connects.

• contentId - a URI representing the ID of the content being presented by the server. This will be a variant on
a DVB URL (“dvb://”) for DVB broadcast services, or the URL of the MPD for MPEG DASH streams.

• contentIdStatus - whether the content Id is in its “final” form or whether it is a “partial” version until full
information is available. For example: a DVB broadcast content ID might not include some elements until the
TV detects certain metadata in the broadcast stream which can take a few seconds.

• presentationStatus - Primarily, whether presentation of the content is “okay”, “transitioning” from one
piece of content to the next, or in a “fault” condition. This can be extended by suffixing space separated
additional terms after the primary term.

• mrsUrl - The URL of an MRS server.

• tsUrl - The WebSockets URL of the CSS-TS server that a client should use if it wants to do Timeline Syn-
chronisation.

• wcUrl - The UDP URL (“udp://<host>:<port”) of the CSS-WC server.

• teUrl - The WebSockets URL of the CSS-TE server that a client should use if it wants to receive Trigger
Events.

• timelines - a list of zero, one or more timelines that the TV believes to be available for synchronising to.

• private - Extension mechanism to carry additional private data.

An example CII message:

10 Chapter 2. DVB CSS Protocol modules
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{
"protocolVersion" : "1.1",
"mrsUrl" : "http://css.bbc.co.uk/dvb/233A/mrs",
"contentId" : "dvb://233a.1004.1044;363a~20130218T0915Z--PT00H45M",
"contentIdStatus" : "partial",
"presentationStatus" : "okay",
"wcUrl" : "udp://192.168.1.5:5800",
"tsUrl" : "ws://192.168.1.8:5815",
"timelines" : [

{
"timelineSelector" : "urn:dvb:css:timeline:temi:1:1",
"timelineProperties" : {

"unitsPerTick" : 5,
"unitsPerSecond" : 10

}
}

]
}

Another example where the contentId has changed, due to a channel change. The server has chosen to omit properties
that have not changed since the previous message:

{
"contentId" : "dvb://233a.1004.1044;364f~20130218T1000Z--PT01H15M",
"contentIdStatus" : "partial",

}

2.1.2 CSS-CII Message objects

Module: dvbcss.protocol.cii

• Examples

• Classes

– CII Message

– Timeline Option

A CII object represents a CII message sent from server to client via the CSS-CII protocol.

A TimelineOption object describes a timeline selector and the tick rate of the timeline if that selector is used to
request a timeline from the CSS-TS server. It is carried in a list in the timelines property of a CII message.

Examples

CII messages:

>>> from dvbcss.protocol.cii import CII
>>> from dvbcss.protocol import OMIT

>>> jsonCiiMessage = \"""\
... { "protocolVersion":"1.1",
... "contentId":"dvb://1234.5678.01ab",

2.1. CSS-CII protocol 11
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... "contentIdStatus":"partial"

... }

... \"""

>>> cii = CII.unpack(jsonCiiMessage)
>>> cii.contentId
'dvb://1234.5678.01ab'

>>> print cii.mrsUrl
OMIT

>>> cii.protocolVersion = OMIT
>>> cii.pack()
'{contentId":"dvb://1234.5678.01ab","contentIdStatus":"partial"}'

TimelineOption within CII messages:

>>> from dvbcss.protocol.cii import CII, TimelineOption

>>> t1 = TimelineOption(timelineSelector="urn:dvb:css:timeline:pts", unitsPerTick=1,
→˓unitsPerSecond=90000)
>>> t2 = TimelineOption(timelineSelector="urn:dvb:css:timeline:temi:1:1",
→˓unitsPerTick=1, unitsPerSecond=1000)

>>> print t1.timelineSelector, t1.unitsPerTick, t1.unitsPerSecond, t1.accuracy
urn:dvb:css:timeline:pts 1 90000 OMIT

>>> cii = CII(presentationStatus="final", timelines=[t1, t2])
>>> cii.pack()
'{ "presentationStatus": "final",

"timelines": [ { "timelineProperties": {"unitsPerSecond": 90000, "unitsPerTick": 1}
→˓,

"timelineSelector": "urn:dvb:css:timeline:pts"
},
{ "timelineProperties": {"unitsPerSecond": 1000, "unitsPerTick": 1},
"timelineSelector": "urn:dvb:css:timeline:temi:1:1"

}
]

}'

Classes

CII Message

class dvbcss.protocol.cii.CII(**kwargs)
Object representing a CII message used in the CSS-CII protocol.

Initialisation takes the following parameters, all of which are optional keyword arguments that
default to OMIT :

Parameters

• protocolVersion (OMIT or “1.1”) – The protocol version being used by the
server.

• mrsUrl (OMIT or str) – The URL of an MRS server known to the server.

12 Chapter 2. DVB CSS Protocol modules
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• contentId (OMIT or str) – Content identifier URI.

• contentIdStatus (OMIT or “partial” or “final”) – Content identifier status.

• presentationStatus (OMIT or list of str) – Presentation status as a list
of one or more strings, e.g. [ "okay" ]

• wcUrl (OMIT or str) – CSS-WC server endpoint URL in the form
“udp://<host>:<port>”

• tsUrl (OMIT or str) – CSS-TS server endpoint WebSocket URL

• teUrl (OMIT or str) – CSS-TE server endpoint WebSocket URL

• timelines (OMIT or list of TimelineOption) – List of timeline options.

• private (OMIT or Signalling that a property is to be omitted from a message) –
Private data.

The attributes of the object have the same name as the CII message properties:

• protocolVersion

• mrsUrl

• contentId

• contentIdStatus

• presentationStatus

• wcUrl

• tsUrl

• teUrl

• timelines

• private

Properties are accessed as attributes of this object using the same name as their JSON property name.

Converting to and from JSON representation is performed using the pack() method and
unpack() class method. Properties set to equal OMIT will be omitted when the message is packed
to a JSON representation.

protocolVersion = OMIT
(read/write OMIT or “1.1”) The protocol version being used by the server.

mrsUrl = OMIT
(read/write OMIT or str) The URL of an MRS server known to the server

contentId = OMIT
(read/write OMIT or str) Content identifier (URL)

contentIdStatus = OMIT
(read/write OMIT or “partial” or “final”) Content identifier status

presentationStatus = OMIT
(read/write OMIT or list of str) Presentation status, e.g. [ "okay" ]

wcUrl = OMIT
(read/write OMIT or str) CSS-WC server endpoint URL in form “udp://<host>:<port>”

tsUrl = OMIT
(read/write OMIT or str) CSS-TS server endpoint WebSocket URL

2.1. CSS-CII protocol 13
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teUrl = OMIT
(read/write OMIT or str) CSS-TE server endpoint WebSocket URL

timelines = OMIT
(read/write OMIT or list`(:class:`TimelineOption)) Timeline options

private = OMIT
(OMIT or list of dict ) Private data as a list of dict objects that can be converted to
JSON by json.dumps(). Each dict must contain at least a key called “type” with a URI
string as its value.

classmethod allProperties()
Returns a list of all property names, whether OMITted or not

combine(diff)
Copies this CII object, and updates that copy with any properties (that are not omitted) in the
CII object supplied as the diff argument. The updated copy is then returned.

Parameters diff – (CII) A CII object whose properties (that are not omitted) will
be used to update the copy before it is returned.

new = old.combine(diff) is equivalent to the following operations:

new = old.copy()
new.update(diff)

copy()
Returns a copy of this CII object. The copy is a deep copy.

definedProperties()
Returns a list of the names of properties whose value is not OMIT

classmethod diff(old, new)
Parameters

• old – (CII) A CII object
• new – (CII) A CII object

Returns CII object representing changes from old to new CII objects.
If in the new CII object a property is OMITted, it property won’t appear in the returned CII
object that represents the changes.

If in the old CII object a property is OMITted, but it has a non-omitted value in the new object,
then it is assumed to be a change.

pack()
Returns string containing JSON representation of this message.
Throws ValueError if there are values for properties that are not permitted.

classmethod unpack(msg)
Convert JSON string representation of this message encoded as a CII object.

Throws ValueError if not possible.

update(diff)
Updates this CII object with the values of any properties (that are not omitted) in the CII object
provided as the diff argument.

Note that this changes this object.
Parameters diff – (CII) A CII object whose properties (that are not omitted) will

be used to update this CII object.
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Timeline Option

class dvbcss.protocol.cii.TimelineOption(timelineSelector, unitsPerTick,
unitsPerSecond, accuracy=OMIT,
private=OMIT)

Object representing a CSS-CII Timeline Option used in the “timelines” property of a CII message.

Initialisation takes the following parameters:

Parameters

• timelineSelector (str) – The timeline selector

• unitsPerTick (int) – Denominator of tick rate (in ticks per second) for the
corresponding timeline

• unitsPerSecond (int) – Numerator of tick rate (in ticks per second) for the
corresponding timeline

• accuracy (OMIT or float) – Optional indication of timeline accuracy

• private (OMIT or Signalling that a property is to be omitted from a message) –
Optional private data.

It represents a timeline selector and the tick rate of the timeline if that selector is used to request
a timeline from the CSS-TS server. It is carried in a list in the timelines property of a CII
message.

The tick rate of the timeline is expressed by the unitsPerTick and unitsPerSecond values. The tick
rate in ticks per second is equal to unitsPerTick / unitsPerSecond.

Accuracy and private data are optional, but the other fields are mandatory.

The attributes of the object have the same name as the relevant CII message properties:

• timelineSelector

• unitsPerTick

• unitsPerSecond

• accuracy

• private

Converting to and from JSON representation is performed using the pack() method and
unpack() class method. Properties set to equal OMIT will be omitted when the message is packed
to a JSON representation.

timelineSelector = OMIT
(str) The timeline selector

unitsPerTick = OMIT
(int) The units per tick of the timeline

unitsPerSecond = OMIT
(int) The units per second of the timeline

accuracy = OMIT
(OMIT or float) The accuracy of the timeline with respect to the content in seconds.

private = OMIT
(OMIT or list of dict ) Private data as a list of dict objects that can be converted to
JSON by json.dumps(). Each dict must contain at least a key called “type” with a URI
string as its value.

2.1. CSS-CII protocol 15
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classmethod decode(struct)
Internal method used by a CII message object when unpacking to JSON format.

classmethod encode(item)
Internal class method used by a CII message object when packing to JSON format.

pack()
Returns string containing JSON presentation of this message.

classmethod unpack(msg)
Convert JSON string representation of this message encoded as a TimelineOption object.

Throws ValueError if not possible.

2.1.3 CSS-CII Clients

Module: dvbcss.protocol.client.cii

• Using CIIClient

• Using CIIClientConnection

• Classes

– CIIClient

– CIIClientConnection

There are two classes provided for implementing CSS-CII clients:

• CIIClient connects to a CII server and provides a CII message object representing the complete state of the
server and notifies you of changes of state.

• CIIClientConnection provides a lower level connection to a CII server and only provides the messages
received from the server. It does not maintain a model of the server state and does not work out when a received
message constitutes a change.

An example client is provided in this package that uses the CIIClient class.

Using CIIClient

This is the simplest class to use. Create it, passing the URL of the server to connect to, then call connect() and
disconnect() to connect and disconnect from the server.

CIIClient maintains a local copy of the state of CII data the CIIClient.cii property and the most recently received
CII message in CIIClient.latestCII.

You can use the class either by subclassing and overriding the various stub methods or by creating an instance and
replacing the stub methods with your own function handlers dynamically.

Pass the WebSocket URL of the CII server when creating the CIIClient then call the connect() and
disconnect() methods to connect and disconnect from the server. The onXXX() methods can be overriden to
find out when connection or disconnection takes place, if there is a protocol error (e.g. a message was received that
could not be parsed as CII) or when properties of the CII data change.

The CII state is kept in the cii property of the object. This is updated with properties in CII messages that are
received. Properties not included in a CII message are left unchanged.

Properties of the CII state whose value is dvbcss.protocol.OMIT have not been defined by the CII server.
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from dvbcss.protocol.client.cii import CIIClient

class MyCIIClient(CIIClient):

def onConnected(self):
print "Connected!"

def onDisconnected(self, code, reason):
print "Disconnected :-("

def onChange(self, propertyNames):
print "The following CII properties have changed:
for name in propertyNames:

value = getattr(conn.cii, name)
print " "+name+" is now: "+str(value)

# one example of a handler for changes to a particular property 'contentId' in
→˓CII

def onContentIdChange(self, newValue):
print "The contentId property has changed to now be: "+str(newValue)

client = MyCIIClient("ws://127.0.0.1/cii")
client.connect()

time.sleep(60)

print "The current contentId is "+client.cii.contentId

time.sleep(60) # wait only 60 more seconds then disconnect

client.disconnect()

The client runs in a separate thread managed by the websocket client library, so the onXXX methods are called while
the main thread sleeps.

Using CIIClientConnection

This is a lower level class, that only implements parsing of the incoming CII messages from the server. It does not
detect if a message actually constitutes a change of state or not.

You can use the class either by subclassing and overriding the various stub methods or by creating an instance and
replacing the stub methods with your own function handlers dynamically.

Pass the WebSocket URL of the CII server when creating the CIIClientConnection object then call the connect()
and disconnect() methods to connect and disconnect from the server. The onXXX() methods can be overridden
to find out when connection or disconnection takes place, if there is a protocol error (e.g. a message was received that
could not be parsed as CII) or when a new CII message is received.

from dvbcss.protocol.client.cii import CIIClientConnection

class MyCIIClientConnection(CIIClientConnection):

def onConnected(self):
print "Connected!"
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def onDisconnected(self, code, reason):
print "Disconnected :-("

def onCii(self, cii):
print "Received a CII message: "+str(cii)

client = MyCIIClientConnection("ws://127.0.0.1/cii")
client.connect()

time.sleep(60) # run only for 60 seconds then disconnect

client.disconnect()

Classes

CIIClient

class dvbcss.protocol.client.cii.CIIClient(ciiUrl)
Manages a CSS-CII protocol connection to a CSS-CII Server and notifies of changes to CII state.

Use by subclassing and overriding the following methods:

• onConnected()

• onDisconnected()

• onChange()

• individual onXXXXChange() methods named after each CII property

• onCiiReceived() (do not use, by preference)

If you do not wish to subclass, you can instead create an instance of this class and replace the methods listed
above with your own functions dynamically.

The connect() and disconnect() methods connect and disconnect the connection to the server and
getStatusSummary() provides a human readable summary of CII state.

This object also provides properties you can query:

• cii represents the current state of CII at the server

• latestCII is the most recently CII message received from the server

• connected indicates whether the connection is currently connect

Initialisation takes the following parameters:

Parameters ciiUrl – (str) The WebSocket URL of the CSS-CII Server (e.g.
“ws://127.0.0.1/myservice/cii”)

connected
True if currently connected to the server, otherwise False.

cii
(CII) CII object representing the CII state at the server
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latestCII
(CII or None) The most recent CII message received from the server or None if nothing has yet been
received.

connect()
Start the client by trying to open the connection.

Throws ConnectionError There was a problem that meant it was not possible to connect.

disconnect()
Disconnect from the server.

onChange(changedPropertyNames)
This method is called when a CII message is received from the server that causes one or more of the CII
properties to change to a different value.

Parameters changedPropertyNames – A list of str names of the properties that have
changed. Query the cii attribute to find out the new values.

onCiiReceived(newCii)
This method is called when a CII message is received, but before any ‘onXXXXChange()’ handlers (if
any) are called. It is called even if the message does not result in a change to CII state held locally.

By preference is recommended to use the ‘onXXXXChange()’ handlers instead since these will only be
called if there is an actual change to the value of a property in CII state.

This is a stub for this method. Sub-classes should implement it.

Parameters cii – A CII object representing the received message.

onConnected()
This method is called when the connection is opened.

This is a stub for this method. Sub-classes should implement it.

onContentIdChange(newValue)
Called when the contentId property of the CII message has been changed by a state update from the CII
Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onContentIdStatusChange(newValue)
Called when the contentIdStatus property of the CII message has been changed by a state update from the
CII Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onDisconnected(code, reason=None)
This method is called when the connection is closed.

This is a stub for this method. Sub-classes should implement it.

Parameters

• code – (int) The connection closure code to be sent in the WebSocket disconnect frame

• reason – (str or None) The human readable reason for the closure

onMrsUrlChange(newValue)
Called when the mrsUrl property of the CII message has been changed by a state update from the CII
Server.

2.1. CSS-CII protocol 19

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str


"pydvbcss - a library implementing DVB protocols for Companion Screen Synchronisation,
Release 0.5.1-release

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onPresentationStatusChange(newValue)
Called when the presentationStatus property of the CII message has been changed by a state update from
the CII Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onPrivateChange(newValue)
Called when the private property of the CII message has been changed by a state update from the CII
Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onProtocolError(msg)
This method is called when there has been an error in the use of the CII protocol - e.g. receiving the wrong
kind of message.

This is a stub for this method. Sub-classes should implement it.

Parameters msg – A str description of the problem.

onProtocolVersionChange(newValue)
Called when the protocolVersion property of the CII message has been changed by a state update from the
CII Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onTeUrlChange(newValue)
Called when the teUrl property of the CII message has been changed by a state update from the CII Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onTimelinesChange(newValue)
Called when the timelines property of the CII message has been changed by a state update from the CII
Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onTsUrlChange(newValue)
Called when the tsUrl property of the CII message has been changed by a state update from the CII Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.

onWcUrlChange(newValue)
Called when the wcUrl property of the CII message has been changed by a state update from the CII
Server.

This is a stub for this method. Sub-classes should implement it.

Parameters newValue – The new value for this property.
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CIIClientConnection

class dvbcss.protocol.client.cii.CIIClientConnection(url)
Simple object for connecting to a CSS-CII server and handling the connection.

Use by subclassing and overriding the following methods:

• onConnected()

• onDisconnected()

• onCII()

• onProtocolError()

If you do not wish to subclass, you can instead create an instance of this class and replace the methods listed
above with your own functions dynamically.

Initialisation takes the following parameters:

Param url (str) The WebSocket URL of the CII Server to connect to. E.g.
“ws://127.0.0.1/mysystem/cii”

connect()
Open the connection.

:throws ConnectionError if there was a problem and the connection could not be opened.

connected
True if the connection is connect, otherwise False

disconnect(code=1001, reason=’‘)
Close the connection.

Parameters

• code – (optional int) The connection closure code to be sent in the WebSocket discon-
nect frame

• reason – (optional str) The human readable reason for the closure

onCII(cii)
This method is called when a CII message is received from the server.

This is a stub for this method. Sub-classes should implement it.

Parameters cii – A CII object representing the received message.

onConnected()
This method is called when the connection is opened.

This is a stub for this method. Sub-classes should implement it.

onDisconnected(code, reason=None)
This method is called when the connection is closed.

This is a stub for this method. Sub-classes should implement it.

Parameters

• code – (int) The connection closure code to be sent in the WebSocket disconnect frame

• reason – (str or None) The human readable reason for the closure
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onProtocolError(msg)
This method is called when there has been an error in the use of the CII protocol - e.g. receiving the wrong
kind of message.

This is a stub for this method. Sub-classes should implement it.

Parameters msg – A str description of the problem.

2.1.4 CSS-CII Servers

Module: dvbcss.protocol.server.cii

• Using CII Server

– 1. Imports and initialisation

– 2. Create and mount the CII server

– 3. Start cherrypy running

– 4. Setting CII state and pushing it to connected clients

– Intelligently setting the host and port in tsUrl, teUrl and wcUrl properties

• What does CIIServer do for you and what does it not?

• Classes

– CIIServer - CII Server handler for cherrypy

The CIIServer class implements a CII server that can be plugged into the cherrypy web server engine.

To create a CII Server, first create and mount the server in a cherrypy web server. Then you can start the cherrypy
server and the CII server will start to accept connections from clients. While the server is running, update the CII state
maintained by that server and instruct it when to push updates to all connected clients.

An example server is provided in this package.

Using CII Server

1. Imports and initialisation

To run a CII server, you must import both ws4py’s cherrypy server and the dvbcss.protocol.server.cii module. When
the dvbcss.protocol.server.cii module is imported, it will register as a “tool” with cherrypy, so it must be imported after
cherrypy is imported.

Next, subscribe the ws4py websocket plugin to cherrypy.

import cherrypy
from ws4py.server.cherrypyserver import WebSocketPlugin
from dvbcss.protocol.server.cii import CIIServer

# initialise the ws4py websocket plugin
WebSocketPlugin(cherrypy.engine).subscribe()
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2. Create and mount the CII server

You can now create an instance of a CIIServer and mount it into the cherrypy server at a path of your choosing.

The configuration for that path must turn on the “dvb_cii” tool and pass a “handler_cls” argument whose value is the
handler class that the CIIServer instance provides via the CIIServer.handler attribute.

For example, to create a CIIServer mounted at the URL path “/cii”:

# create CII Server
ciiServer = CIIServer(maxConnectionsAllowed=2)

# bind it to the URL path /cii in the cherrypy server
class Root(object):

@cherrypy.expose
def cii(self):

pass

# construct the configuration for this path, providing the handler and turning on the
→˓tool hook
cfg = {"/cii": {'tools.dvb_cii.on': True,

'tools.dvb_cii.handler_cls': ciiServer.handler
}

}

cherrypy.tree.mount(Root(), "/", config=cfg)

3. Start cherrypy running

Start cherrypy running and our CII server will start to accept connections from clients:

# configure cherrypy to serve on port 7681
cherrypy.config.update({"server.socket_port":7681})

# activate cherrypy web server (non blocking)
cherrypy.engine.start()

The cherrypy engine runs in a background thread when the cherrypy engine is started.

4. Setting CII state and pushing it to connected clients

The CIIServer.cii is a CII message object representing the CII state. Your code can read and alter the attributes
of this message object to update the server side state.

When a client first connects, a CII message object will automatically be sent to that client to send it the current CII
state. Your code does not need to do this.

If you update the CII state then you need to ask the CII server to push a change to all connected clients. To do this
call the CIIServer.updateClients() method. By default this will only push changes to CII state, and will not
send a message at all if there is no change. However this behaviour can be overridden.

ciiServer.cii.contentId = "dvb://233a.1004.1080"
ciiServer.cii.contentIdStatus = "partial"
ciiServer.updateClients()

...
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ciiServer.cii.contentId = "dvb://233a.1004.1080;21af~20131004T1015Z--PT01H00M"
ciiServer.cii.contentIdStatus = "final"
ciiServer.updateClients()

Intelligently setting the host and port in tsUrl, teUrl and wcUrl properties

CIIServer has built in support to help in situations where it is difficult to determine the host and port to which
clients are connecting in order to contact the CII Server, or where CIIServer might be contacted via more than one
network interface.

At initialisation, pass the optional rewriteHostPort argument, setting it to a list of properties for which you want it to
fix the host/port in URLs. Then within the CII, put {{host}} and {{port}} in place of the host and port number. The
CIIServer will then automatically substitute this in the properties you have listed.

For example:

ciiServer = CIIServer(rewriteHostPort=['tsUrl','wcUrl'])
ciiServer.cii = CII(

tsUrl='ws://{{host}}:{{port}}/ts',
wcUrl='udp://{{host}}:6677'

)

This will be done transparently and individually for each connected client. The cii property of the CII server will
contain the {{host}} and {{port}} patterns before the substitution takes place.

What does CIIServer do for you and what does it not?

CIIServer handles the connection and disconnection of clients without requiring any further intervention. It ensure
the current state in its cii property is sent, in a CII message, to the client as soon as it connects.

The role of your code is to update the cii object as state changes, and to inform the CIIServer when it is time to
update any connected clients by informing them of the changes to state by calling the updateClients() method.

Classes

CIIServer - CII Server handler for cherrypy

class dvbcss.protocol.server.cii.CIIServer(maxConnectionsAllowed=-1, enabled=True, ini-
tialCII=CII(protocolVersion=‘1.1’), rewriteHost-
Port=[])

The CIIServer class implements a server for the CSS-CII protocol. It transparently manages the connection and
disconnection of clients and provides an interface for simply setting the CII state and requesting that it be pushed
to any connected clients.

Must be used in conjunction with a cherrypy web server:

1. Ensure the ws4py WebSocketPlugin is subscribed, to the cherrypy server. E.g.

WebSocketPlugin(cherrypy.engine).subscribe()

2. Mount the instance onto a particular URL path on a cherrypy web server. Set the config properties for the
URL it is to be mounted at as follows:
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{ 'tools.dvb_cii.on' : True,
'tools.dvb_cii.handler_cls': myCiiServerInstance.handler }

Update the cii property with the CII state information and call the updateClients() method to propagate
state changes to any connected clients.

When the server is “disabled” it will refuse attempts to connect by sending the HTTP status response 403
“Forbidden”.

When the server has reached its connection limit, it will refuse attempts to connect by sending the HTTP status
response 503 “Service unavailable”.

This object provides properties:

• enabled (read/write) controls whether this server is enabled or not

• cii (read/write) the CII state that is being shared to connected clients

To allow for servers serving multiple network interfaces, or where the IP address of the interface is not easy
to determine, CII Server can be asked to automatically substitute the host and port with the one that the client
connected to. Specify the list of property names for which this shoud happen as an optional rewritheostPort
argument when intialising the CIIServer, then use {{host}} {{port}} within those properties.

Initialisation takes the following parameters:

Parameters

• maxConnectionsAllowed – (int, default=-1) Maximum number of concurrent connec-
tions to be allowed, or -1 to allow as many connections as resources allow.

• enabled – (bool, default=True) Whether the endpoint is initially enabled (True) or dis-
abled (False)

• initialCII – (dvbcss.protocol.cii.CII, default=CII(protocolVersion=”1.1”))
Initial value of CII state.

• rewriteHostPort – (list) List of CII property names for which the sub-string ‘{{host}}’
‘{{port}}’ will be replaced with the host and port that the client connected to.

cii

handler
Handler class for new connections.

When mounting the CII server with cherrypy, include in the config dict a key ‘tools.dvb_cii.handler_cls’
with this handler class as the value.

enabled
(read/write bool) Whether this server endpoint is enabled (True) or disabled (False).

Set this property enable or disable the endpoint.

When disabled, existing connections are closed with WebSocket closure reason code 1001 and new at-
tempts to connect will be refused with HTTP response status code 403 “Forbidden”.

getConnections()

Returns dict mapping a WebSocket object to connection related data for all connections to
this server. This is a snapshot of the connections at the moment the call is made. The
dictionary is not updated later if new clients connect or existing ones disconnect.

onClientConnect(webSock)
If you override this method you must call the base class implementation.
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onClientDisconnect(webSock, connectionData)
If you override this method you must call the base class implementation.

onClientMessage(webSock, message)
If you override this method you must call the base class implementation.

updateClients(sendOnlyDiff=True, sendIfEmpty=False)
Send update of current CII state from the CIIServer.cii object to all connected clients.

Parameters

• sendOnlyDiff – (bool, default=True) Send only the properties in the CII state that have
changed since last time a message was sent. Set to False to send the entire message.

• sendIfEmpty – (bool, default=False) Set to True to force that a CII message be sent,
even if it will be empty (e.g. no change since last time)

By default this method will only send a CII message to clients informing them of the differencesin state
since last time a message was sent to them. If no properties have changed at all, then no message will be
sent.

The two optional arguments allow you to change this behaviour. For example, to force the messages sent
to include all properties, even if they have not changed:

myCiiServer.updateClients(sendOnlyDiff=False)

To additionally force it to send even if the CII state held at this server has no values for any of the properties:

myCiiServer.updateClients(sendOnlyDiff=False, sendIfEmpty=True)

This package provides objects for representing messages exchanged via the DVB CSS-CII protocol and for imple-
menting clients and servers.

The CII protocol is a mechanism for sending state updates from server to client. The state of the server can be
represented by a CII message where every property is populated with a value. The server can send complete CII
messages or partial ones containing only the properties that have changed value since the last message. The client
must track these changes to maintain its own local up-to-date copy of the complete state.

Modules for using the CSS-CII protocol:

• dvbcss.protocol.cii : objects for representing and packing/unpacking the CSS-CII protocol messages.

• dvbcss.protocol.client.cii : implementations of a client for a CSS-CII connection.

• dvbcss.protocol.server.cii : implementations of a server for a CSS-CII connection.

2.2 CSS-TS protocol

2.2.1 CSS-TS Protocol introduction

Here is a quick introduction to the CSS-TS protocol. For full details, refer to the DVB specification ETSI 103
286 part 2.

The CSS-TS protocol is for Timeline Synchronisation. Via this protocol, the server (e.g. TV) pushes timestamps to the
client (e.g. companion) to keep it up-to-date on the progress of a particular timeline. The timeline to use is requested
by the client at the beginning of the interaction.

A client can also report its own timing and what range of timings it can cope with. This allows the client to negotiate
a mutually achievable timing with the server, although the server is under no obligation and can choose to ignore this
information.
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It is a WebSockets based protocol and messages are in JSON format.

• Sequence of interaction

• Determining timeline selection and availability

• What does a timestamp convey?

Sequence of interaction

The client is assumed to already know the WebSocket URL for the CSS-TS server (usually from the information
received via the CSS-CII protocol).

1. The client connects to the CSS-TS server. Either this is refused via an HTTP status code response, or it is accepted.

2. The client then immediately sends an initial SetupData message to request the timeline to synchronise with.

3. The server then starts sending back ControlTimestamp messages that update the client as to the state of that
timeline. This state says either that the timeline is currently unavailable, or that it is available, and here is how to
calculate the timeline position from the wall clock position.The server sends as frequently or infrequently as it likes,
but will at least send them if there is a meaningful change in the timeline.

4. The client can, optionally, send its own AptEptLpt messages to inform the server of what it is doing, and the
range of different timings it can achieve for its media (e.g. what is the earliest and latest timings it can achieve).
However this is purely informative. A server is not obliged to do anything with this information.

Determining timeline selection and availability

The SetupData message conveys to the CSS-TS server details of what timeline the client wants to synchronise to.

The CSS-TS server determines, at any given moment, if a timeline is available by checking if:

1. the stem matches the current content identifier for what is being presented at the server (meaning that the stem
matches the left hand most subset of the content id);

2. and the timeline selector identifies a timeline that exists for the content being presented at the server.

While the above is true, the timeline is “available”. While it is not true, it is “unavailable”. The CSS-TS con-
nection is kept open irrespective of timeline availability. The server indicates changes in availability via the
ControlTimestamp messages it sends.

Example SetupData message; requesting a PTS timeline for a particular DVB broadcast channel, but not being
specific about which event (programme in the EPG):

{
"contentIdStem" : "dvb://233a.1004.1044",
"timelineSelector" : "urn:dvb:css:timeline:pts"

}

What does a timestamp convey?

It represents a relationship between Wall Clock time and the timeline of the content being presented by the TV Device.
It is sometimes referred to as a (point of) correlation between the wall clock and the timeline.
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This relationship can be visualised as a line that maps from wall clock time (on one axis) to timeline time (on the other
axis). The (content-time, wall-clock-time) correlation is a point on the line. The timelineSpeedMultiplier represents
the slope. The tick rates of each timeline are the units (the scale of each axis).

The CSS-TS server sends ControlTimestamp messages to clients, and clients can, optionally, send back
AptEptLpt messages.

A ControlTimestamp can also tell a client if a timeline is unavailable by having null values for the contentTime and
timelineSpeedMultiplier properties. Non-null values mean the timeline is available.

AptEptLpt messages enables a client to inform a server of what time it is presenting at (the “actual” part of the
timestamp) and also to indicate the earliest and latest times it could present. It is, in effect, three correlations bundled
into one message, to represent each of these three aspects. Earliest and Latest correlations are allowed to have -infinity
and +infinity for the wall clock time to indicate that the client has no limits on how early, or late, it can present.

An example ControlTimestamp indicating the timeline is unavailable:

{
"contentTime" : null,
"wallClockTime" : "116012000000",
"timelineSpeedMultiplier" : null

}

An example ControlTimestamp providing a correlation for an available timeline:

{
"contentTime" : "834188",
"wallClockTime" : "116012000000",
"timelineSpeedMultiplier" : 1.0

}

An example of an AptEptLpt message, indicating the current presentation timing being used by the client; a limit
on how early it can present; but no limit on how long it can delay (buffer):

{
"actual" : {

"contentTime" : "834190",
"wallClockTime" : "115992000000"

},
"earliest" : {

"contentTime" : "834190",
"wallClockTime" : "115984000000"

},
"latest" : {

"contentTime" : "834190",
"wallClockTime" : "plusinfinity"

}
}

2.2.2 CSS-TS Message objects

Module: dvbcss.protocol.ts

• Examples

• +/- infinity
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• Classes

– setup-data

– Control Timestamp

– AptEptLpt (Actual, Earliest and Latest Presentation Timestamp)

– Timestamp

A SetupData object represents a setup-data message sent by a client to a server immediately after opening a CSS-TS
protocol connection.

A ControlTimestamp object represents a Control Timestamp message sent by the server to the client.

A AptEptLpt object represents an Actual, Earliest and Latest Presentation Timestamp message that may be sent by
a client to the server.

The Timestamp objects are used in the above message objects to represent the relationship between wall clock time
and content (timeline) time.

Examples

SetupData examples:

>>> from dvbcss.protocol.ts import SetupData
>>> from dvbcss.protocol import OMIT

>>> s = SetupData(timelineSelector="urn:dvb:css:timeline:pts", ciStem="dvb://1004")
>>> s.pack()
'{"timelineSelector": "urn:dvb:css:timeline:pts", "contentIdStem": "dvb://1004"}'

>>> jsonMessage = \"""\
... { "timelineSelector":"urn:dvb:css:timeline:temi:1:1",
... "contentIdStem":""
... }
... \"""
>>> SetupData.unpack(jsonMessage)
SetupData(ciStem="", timelineSelector="urn:dvb:css:timeline:temi:1:1", private=OMIT)

ControlTimestamp examples:

>>> from dvbcss.protocol.ts import ControlTimestamp, Timestamp

>>> t = Timestamp(contentTime=12345, wallClockTime=900028432)
>>> ct = ControlTimestamp(timestamp=t, timelineSpeedMultiplier=1)
>>> ct.pack()
'{"timelineSpeedMultiplier": 1.0, "wallClockTime": "900028432", "contentTime": "12345
→˓"}'

>>> jsonMessage = \"""\
... { "contentTime" : "1003847",
... "wallClockTime" : "348957623498576",
... "timelineSpeedMultiplier" : 2.0
... }
... \"""
>>> c = ControlTimestamp.unpack(jsonMessage)
>>> c.timestamp.contentTime
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1003847
>>> c.timestamp.wallClockTime
348957623498576
>>> c.timelineSpeedMultiplier
2.0

Actual, Earliest and Latest Presentation Timestamp examples:

>>> from dvbcss.protocol.ts import AptEptLpt, Timestamp

>>> te = Timestamp(contentTime=123465, wallClockTime=float("-inf"))
>>> tl = Timestamp(contentTime=123465, wallClockTime=float("+inf"))
>>> ael = AptEptLpt(earliest=te, latest=tl)
>>> ael.pack()
'{"earliest": {"wallClockTime": "minusinfinity", "contentTime": "123465"}, "latest": {
→˓"wallClockTime": "plusinfinity", "contentTime": "123465"}}'

>>> jsonMessage = \"""\
... { "earliest" : { "contentTime" : "1000", "wallClockTime": "10059237" },
... "latest" : { "contentTime" : "1000", "wallClockTime": "19284782" },
... "actual" : { "contentTime" : "1005", "wallClockTime": "10947820" }
... }
... \"""
>>> ael=AptEptLpt.unpack(jsonMessage)
>>> ael.actual.contentTime
1005
>>> ael.actual.wallClockTime
10947820

+/- infinity

For certain timestamp messages it is permissible to convey a time value that is either plus or minus infinity. Use the
python float to express these values as follows:

>>> float("+inf")
inf

>>> float("-inf")
-inf

Classes

setup-data

class dvbcss.protocol.ts.SetupData(contentIdStem, timelineSelector, private=OMIT)
Object representing a CSS-TS Setup-Data message.

This carries a content identifier stem and a timeline selector string, and is used, in effect, to request
the timeline to be synchronised to via the CSS-TS protocol.

Initialisation takes the following parameters:

Parameters

• contentIdStem (str) – The content identifier stem.
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• timelineSelector (str) – The timeline selector

• private (OMIT or Signalling that a property is to be omitted from a message) –
Optional private data.

The attributes of the object have the same name as the SetupData message properties:

• contentIdStem

• timelineSelector

• private

Converting to and from JSON representation is performed using the pack() method and
unpack() class method. Properties set to equal OMIT will be omitted when the message is packed
to a JSON representation.

contentIdStem
(read/write str) The stem (subset starting from the LHS) of a content identifier

timelineSelector
(read/write str) The timeline selector

private = OMIT
(read/write OMIT or Signalling that a property is to be omitted from a message) Optional private
data.

copy()
Returns a copy of this SetupData object. Note that this does NOT deep copy any

private data.

pack()
Returns string containing JSON representation of this message.
Throws ValueError if there are values for properties that are not permitted.

classmethod unpack(msg)
Convert JSON string representation of this message encoded as a SetupData object.

Throws ValueError if not possible.

Control Timestamp

class dvbcss.protocol.ts.ControlTimestamp(timestamp, timelineSpeedMultiplier)
Object representing a CSS-TS Control Timestamp message.

Initialisation takes the following parameters:

Parameters

• timestamp (Timestamp) – carries the contentTime and wallClockTime proper-
ties of the Control Timestamp

• timelineSpeedMultiplier (float or None) – the timeline speed multi-
plier

The attributes of the object have the following relationship to the message properties:

• timestamp

• timelineSpeedMultiplier

Converting to and from JSON representation is performed using the pack() method and
unpack() class method.
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timestamp
(read/write Timestamp) Timestamp object representing the contentTime and wallClock-
Time parts of the timestamp)

timelineSpeedMultiplier
(read/write float or None) Timeline speed. For example: 1 = normal, 0 = pause, -0.5 = half
speed reverse. Use None only when the Control Timestamp is supposed to indicate that the
timeline is unavailable.

copy()
Returns a deep copy of this Control Timestamp object

pack()
Returns string containing JSON representation of this message.
Throws ValueError if there are values for properties that are not permitted.

classmethod unpack(msg)
Convert JSON string representation of this message encoded as a ControlTimestamp ob-
ject.

Throws ValueError if not possible.

AptEptLpt (Actual, Earliest and Latest Presentation Timestamp)

class dvbcss.protocol.ts.AptEptLpt(actual=OMIT, earli-
est=Timestamp(contentTime=0, wallClockTime=-
inf), latest=Timestamp(contentTime=0, wall-
ClockTime=inf))

Object representing a CSS-TS Actual, Earliest and Latest Presentation Timestamp message.

Initialisation takes the following parameters:

Parameters

• actual (OMIT or Timestamp) – Optional timestamp representing the actual pre-
sentation timing

• earliest (OMIT or Timestamp) – Timestamp representing the earliest possible
presentation timing

• latest (OMIT or Timestamp) – Timestamp representing the latest possible pre-
sentation timing

For the actual presentation timestamp, the contentTime and wallClockTime must both be non-null
integer values.

For the earliest presentation timestamp, the contentTime must be a non-null integer. wallClockTime
can be a non-null integer or plus infinity

For the latest presentation timestamp, the contentTime must be a non-null integer. wallClockTime
can be a non-null integer or minus infinity

The attributes of the object have the same names as the Actual, Earliest and Latest presentation
timestamp message properties:

• actual

• earliest

• latest
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Converting to and from JSON representation is performed using the pack() method and
unpack() class method. If values of properties do not meet the requirements described above,
then pack() will raise ValueError exceptions.

actual
(read/write OMIT or Timestamp) Actual presentation timestamp

earliest
(read/write Timestamp) Earliest presentation timestamp. The wallClockTime property must
be an int or float("+inf"). It must not be float("-inf").

latest
(read/write Timestamp) Latest presentation timestamp. The wallClockTime property must be
an int or float("-inf"). It must not be float("+inf").

copy()
Returns a deep copy of this AptEptLpt object

pack()
Returns string containing JSON representation of this message.
Throws ValueError if there are values for properties that are not permitted.

classmethod unpack(msg)
Convert JSON string representation of this message encoded as a AptEptLpt object.

Throws ValueError if not possible.

Timestamp

This object does not directly represent a message, but is instead used by ControlTimestamp and AptEptLpt as
a representation of a correlation between a content time and a wall clock time.

class dvbcss.protocol.ts.Timestamp(contentTime, wallClockTime)
Object representing a Timestamp part(s) of a ControlTimestamp or AptEptLpt object.

Initialisation takes the following parameters:

Parameters

• contentTime (None or int) – The content time (time on timeline) part of a
timestamp

• wallClockTime (int or +/- infinity float (“+inf”) or float (“-inf”)) – The
wall clock time part of a timestamp

The values for contentTime and wallClockTime are allowed to be arbitrarily large precision integers
because they are carried as a string in the JSON representation.

The attributes of the object have the same name as the corresponding message properties:

• contentTime

• wallClockTime

Converting to and from JSON representation is performed using the pack() method and
unpack() class method.

contentTime
(read/write None or large int) The content time part of a timestamp

wallClockTime
(read/write large int or float("+inf") or float("-inf") ) The wall clock time part
of a timestamp
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2.2.3 CSS-TS Clients

Module: dvbcss.protocol.client.ts

• Using TSClientClockController

• Using TSClientConnection

• Classes

– TSClientConnection

– TSClientClockController

There are two classes provided for implementing CSS-TS clients:

• TSClientClockController wraps a TSClientConnection and provides a higher level interface that pro-
vides information about timeline availability and drives a clock object to match the timeline.

• TSClientConnection implements the core functionality of connecting to a CSS-TS server and providing
methods and callbacks to manage the connection and send and receive timestamp messages.

An example client is provided in this package that uses the TSClientClockController class.

Using TSClientClockController

This class provides a high level interface that drives a CorrelatedClock object to match the timeline provided by
a CSS-TS server. Subclass to get notifications of connection, disconnection and timing changes or changes in timeline
availability.

Create it, passing the URL of the server to connect to, and a connect and disconnect() to connect and discon-
nect from the server.

The clock you provide must be a CorrelatedClock object and the parent clock of that clock must represent the
wall clock. The tick rate of this clock must match that of the timeline and the tick rate of the wall clock must be 1 tick
per nanosecond (1e9 ticks per second). This should therefore be used in conjunction with a WallClockClient to
ensure the wall clock is meaningfully synchronised to the same server.

The TSClientClockController object maintains the connection and automatically adjusts the correlation
of the clock to synchronise it, using the information in the Control Timestamps received from the server. It adjusts the
speed() to match speed changes of the timeline. It also sets the availability of the clock to reflect the availability of
the timeline.

You can set a minimum threshold for how much the timing must change before the the timeline clock will be adjusted.

You can also provide separate clock objects to represent the earliest and latest presentation timings that your application
can achieve (and that you wish to convey to the server). These must also be CorrelatedClock objects. Use the
TSClientClockController.sendAptEptLpt() method to cause that information to be sent to the server.

A simple example:

from dvbcss.protocol.client.ts import TSClientClockController
from dvbcss.clock import CorrelatedClock, SysClock

sysClock = SysClock()
wallClock = CorrelatedClock(parent=sysClock, tickRate=1000000000) # 1 nanosecond per
→˓tick
timelineClock = CorrelatedClock(parent=wallClock, tickRate=90000) # will represent
→˓PTS
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# NOTE: need a Wall Clock Client too (not shown in this example)
# to ensure wallClock is synchronised

class MyTSClient(TSClientClockController):

def onConnected(self):
print "Conected!"

def onDisconnected(self):
print "Disconnected :-("

def onTimelineAvailable(self):
print "Timeline is available!"

def onTimelineUnavailable(self):
print "Timeline is not available :-("

def onTimingChange(self, speedHasChanged):
print "Timing of clock has been adjusted."
if speedHasChanged:

print "The speed of the clock has altered."

# make connection. Want PTS timeline for any DVB service.
client = MyTSClient("ws://192.168.1.1:7682/ts",

"dvb://",
"urn:dvb:css:timeline:pts",
timelineClock)

client.connect()

for i in range(0,60):
time.sleep(1)
print "Timeline available?", timelineClock.isAvailable()
if timelineClock.isAvailable():

print "Timeline currently at tick value = ", timelineClock.ticks
print " ... and moving at speed = ", timelineClock.speed

client.disconnect()

The client runs in a separate thread managed by the websocket client library, so the onXXX methods are called while
the main thread sleeps.

Using TSClientConnection

This class provides the lowest level interface to a CSS-TS server. It only implements the parsing of incoming Control
Timestamp messages and sending of outgoing Actual, Earliest and Latest Presentation Timestamp messages. It does
not try to understand the meaning of the messages sent or received.

You can use the class either by subclassing and overriding the various stub methods or by creating an instance and
replacing the stub methods with your own function handlers dynamically.

Pass the WebSocket URL of the CSS-TS server during initialisation then call the connect() and disconnect()
methods to connect and disconnect from the server. The onXXX() methods are called when connection or disconnection
takes place, if there is a protocol error (e.g. a message was received that could not be parsed as Control Timestamp)
or a new Control Timestamp is received.

A simple example:

2.2. CSS-TS protocol 35



"pydvbcss - a library implementing DVB protocols for Companion Screen Synchronisation,
Release 0.5.1-release

from dvbcss.protocol.client.ts import TSClientConnection
from dvbcss.protocol.ts import AptEptLpt
from dvbcss.protocol import OMIT

class MyClientConnection(TSClientConnection):
def onConnected(self):

print "Connected!"
e = Timestamp(0, float("-inf"))
l = Timestamp(0, float("+inf"))
aptEptLpt = AptEptLpt(earliest=e, latest=l, actual=OMIT)
client.sendTimestamp(aptEptLpt)

def onDisconnected(self, code, reason):
print "Disconnected :-("

def onControlTimestamp(self, ct):
print "Received a ControlTimestamp: "+str(ct)

# make connection. Want PTS timeline for any DVB service.
client = MyTSClientConnection("ws://127.0.0.1/ts", "dvb://", "urn:dvb:css:timeline:pts
→˓")
client.connect()

time.sleep(60) # run only for 60 seconds then disconnect

client.disconnect()

Classes

TSClientConnection

class dvbcss.protocol.client.ts.TSClientConnection(url, contentIdStem, timelineSelector)
Simple object for connecting to a CSS-TS server (an MSAS) and handling the connection.

Use by subclassing and overriding the following methods or assigning your own functions to them at runtime:

• onConnected()

• onDisconnected()

• onControlTimestamp()

• onProtocolError()

If you do not wish to subclass, you can instead create an instance of this class and replace the methods listed
above with your own functions dynamically.

Use the sendTimestamp()method to send Actual, Earliest and Latest Presentation Timestamps to the server.

This class has the following properties:

• connected (read only) whether the client is connected or not

Initialisation takes the following parameters:

Parameters

• url (str) – The WebSocket URL of the TS Server to connect to. E.g.
“ws://127.0.0.1/mysystem/ts”
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• contentIdStem (str) – The stem of the content id to be included in the SetupData
message that is sent as soon as the connection is opened.

• timelineSelector (str) – The timeline selector to be included in the SetupData mes-
sage that is sent as soon as the connection is opened.

connect()
Open the connection.

Throws ConnectionError if there was a problem and the connection could not be opened.

connected
This property is True if the connection is connect, otherwise False

disconnect(code=1001, reason=’‘)
Close the connection.

Parameters

• code – (optional int) The connection closure code to be sent in the WebSocket discon-
nect frame

• reason – (optional str) The human readable reason for the closure

onConnected()
This method is called when the connection is opened and the setup-data message has been sent.

This is a stub for this method. Sub-classes should implement it.

onControlTimestamp(controlTimestamp)
This method is called when a Control Timestamp message is received from the server.

This is a stub for this method. Sub-classes should implement it.

Parameters controlTimestamp – A ControlTimestamp object representing the re-
ceived message.

onDisconnected()
This method is called when the connection is closed.

This is a stub for this method. Sub-classes should implement it.

onProtocolError(msg)
This method is called when there has been an error in the use of the TS protocol - e.g. receiving the wrong
kind of message.

This is a stub for this method. Sub-classes should implement it.

Parameters msg – A str description of the problem.

sendTimestamp(aptEptLpt)
Send an Actual, Earliest and Latest Presentation Timestamp message to the TS Server.

Parameters aptEptLpt – The AptEptLpt object representing the Actual, Earliest and Lat-
est Presentation Timestamp to be sent.
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TSClientClockController

class dvbcss.protocol.client.ts.TSClientClockController(tsUrl, contentIdStem, time-
lineSelector, timelineClock,
correlationChangeThresh-
oldSecs=0.0001, earli-
estClock=None, latest-
Clock=None)

This class manages a CSS-TS protocol connection and controls a CorrelatedClock to synchronise it to the
timeline provided by the server.

Subclass and override the following methods when using this class:

• onConnected()

• onDisconnected()

• onTimingChange()

• onTimelineAvailable()

• onTimelineUnavailable()

• onProtocolError()

If you do not wish to subclass, you can instead create an instance of this class and replace the methods listed
above with your own functions dynamically.

Create an instance of this class and use the connect() and disconnect() methods to start and stop
its connection to the server. The contentIdStem and timelineSelector you specify are sent to the server in a
SetupData message to choose the timeline to receive from the server.

While connected, while the timeline is available, the timelineClock you provided will have its correlation
updated to keep it in sync with the timeline received from the server.

The speed property of the timeline clock will also be adjusted to match the timeline speed indicated by the
server. For example: it will be set to zero when the timeline is paused, or 2.0 when the timeline speed is x2. The
tickRate property of the clock is not changed.

Requirements for the timeline clock you provide:

• The tickRate of the timeline clock must match that of the timeline.

• Its parent must represent the wall clock

• The wall clock must have a ~dvbcss.clock.CorrelatedClock.tickRate that matches the wall clock tick rate.

The TSClientClockController has the following properties:

• connected (read only) is the client connected?

• timelineAvailable (read only) is the timeline available?

• latestCt (read only) is the most recently received ControlTimestamp message

• earliestClock (read/write) A clock object representing earliest possible presentation timing, or None

• latestClock (read/write) A clock object representing latest possible presentation timing, or None

Initialisation takes the following parameters:

Parameters

• url (str) – The WebSocket URL of the TS Server to connect to. E.g.
“ws://127.0.0.1/mysystem/ts”
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• contentIdStem (str) – The stem of the content id to be included in the SetupData
message that is sent as soon as the conncetion is opened.

• timelineSelector (str) – The timeline selector to be included in the SetupData mes-
sage that is sent as soon as the conncetion is opened.

• timelineClock (CorrelatedClock) – A clock object whose parent must represent
the wall clock.

• correlationChangeThresholdSecs (float) – Minimum threshold for the change
in the timeline (in units of seconds) that will result in the timeline clock being adjusted.

• earliestClock (CorrelatedClock or None) – An optional clock object represent-
ing the earliest possible presentation timing that this client can achieve (expressed on the
same timeline)

• latestClock (CorrelatedClock or None) – An optional clock object representing
the latest possible presentation timing that this client can achieve (expressed on the same
timeline)

connected
(bool) True if currently connected to the server, otherwise False.

latestCt
(ControlTimestamp) A copy of the most recently received Control Timestamp.

earliestClock
None or a CorrelatedClock correlated to the WallClock representing the earliest possible presenta-
tion timing.

latestClock
None or a CorrelatedClock correlated to the WallClock representing the latest possible presentation
timing.

connect()
Start the client by trying to open the connection.

If the connection opens successfully, a SetupData message will be sent automatically.

Throws ConnectionError if there was a problem and the connection could not be opened.

disconnect()
Disconnect from the server.

getStatusSummary()

Returns str A human readable string describing the state of the timeline and the connection.

onConnected()
This method is called when the connection is opened and the setup-data message has been sent.

This is a stub for this method. Sub-classes should implement it.

onDisconnected()
This method is called when the connection is closed.

This is a stub for this method. Sub-classes should implement it.

onProtocolError(msg)
This method is called when there has been an error in the use of the CII protocol - e.g. receiving the wrong
kind of message.

This is a stub for this method. Sub-classes should implement it.

Parameters msg – A str description of the problem.
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onTimelineAvailable()
This method is called when the server indicates that the timeline is available.

This is a stub for this method. Sub-classes should implement it.

onTimelineUnavailable()
This method is called when the server indicates that the timeline is unavailable.

This is a stub for this method. Sub-classes should implement it.

onTimingChange(speedChanged)
This method is called when the server indicates that the timeline timing has changed.

This means that a received Control Timestamp has changed the timing of the clock relative to the wall
clock by the threshold amount or more, or that the speed of the timeline has changed. (as indicated by the
timelineSpeedMultiplier property of received Control Timestamps).

This is a stub for this method. Sub-classes should implement it.

Parameters speedChanged – (bool) True if the speed of the timeline has changed, other-
wise False.

sendAptEptLpt(includeApt=True)
Sends an Actual, Earliest and Latest presentation timestamp to the CSS-TS server.

• The EPT is derived from the earliestClock property, if it is not None and it is a clock that is
available.

• The LPT is derived from the latestClock property, if it is not None and it is a clock that is
available.

• The APT is only included if the includeApt argument is True (default=True) and it is a clock that is
available.

Parameters includeApt – (bool) Set to False if the Actual Presentation Timestamp is not
to be included in the message (default=True)

timelineAvailable
(bool) True if the most recently received Control Timestamp indicates that the timeline is available.

Changed in version 0.4: It is now recommended to not use this method. Instead, use the isAvailable()
method of a clock instead.

2.2.4 CSS-TS Servers

Module: dvbcss.protocol.server.ts

• Using TSServer and Timeline Sources

– 1. Imports and initialisation

– 2. Create and mount the TS server

– 3. Start cherrypy running

– 4. Providing timelines through the TS Server

– 5. Changing content id

• What does TSServer do for you and what does it not?
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• More about Timeline Sources

– Exising timeline source implementations

– Creating new Timeline Sources

• Classes

– TSServer

– TimelineSource

– SimpleTimelineSource

– SimpleClockTimelineSource

• Functions

– ciMatchesStem

– isControlTimestampChanged

The TSServer class implements a CSS-TS server that can be plugged into the cherrypy web server engine.

To create a CSS-TS Server, first create and mount the server in a cherrypy web server. Then you can start the cherrypy
server and the CSS-TS server will start to accept connections from clients.

The CSS-TS Server needs a timeline source to be given to it in order for it to serve these to clients. A timeline source
provides the Control Timestamps given a particular timeline selector. A CSS-TS server can have multiple timelines
sources plugged into it, and they can be added or removed dynamically while the server is running.

An example server is provided in this package.

Using TSServer and Timeline Sources

1. Imports and initialisation

To run a CSS-TS server, you must import both ws4py’s cherrypy server and the dvbcss.protocol.server.ts module.
When the dvbcss.protocol.server.ts module is imported, it will register as a “tool” with cherrypy, so it must be imported
after cherrypy is imported.

Next, subscribe the ws4py websocket plugin to cherrypy.

import cherrypy
from ws4py.server.cherrypyserver import WebSocketPlugin
from dvbcss.protocol.server.ts import TSServer

# initialise the ws4py websocket plugin
WebSocketPlugin(cherrypy.engine).subscribe()

2. Create and mount the TS server

You can now create an instance of a TSServer and mount it into the cherrypy server at a path of your choosing.

The configuration for that path (see example code below) must turn on the “dvb_ts” tool and pass a “handler_cls” ar-
gument whose value is the handler class that the TS Server instance provides via the TSServer.handler attribute.

The TS Server needs, at initialisation, to be told the initial contentId that it is providing timelines for and it also needs
to be provided with a clock object representing the Wall Clock (ticking at the correct rate of 1e9 ticks per second). It
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needs the WallClock so it can set the WallClockTime property in Control Timestamps that notify clients of a timeline
being unavailable.

For example, to create a TS Server mounted at the URL path “/ts”:

# create a Wall Clock
from dvbcss.clock import SysClock, CorrelatedClock
sysClock = SysClock()
wallClock = CorrelatedClock(parentClock=sysClock, tickRate=1000000000)

# create TS Server
tsServer = TSServer(contentId="dvb://1004", wallClock=wallClock,
→˓maxConnectionsAllowed=10)

# bind it to the URL path /ts in the cherrypy server
class Root(object):

@cherrypy.expose
def ts(self):

pass

# construct the configuration for this path, providing the handler and turning on the
→˓tool hook
cfg = {"/ts": {'tools.dvb_ts.on': True,

'tools.dvb_ts.handler_cls': tsServer.handler
}

}

cherrypy.tree.mount(Root(), "/", config=cfg)

3. Start cherrypy running

Start cherrypy running and our TS server will start to accept connections from clients:

# configure cherrypy to serve on port 7681
cherrypy.config.update({"server.socket_port":7682})

# activate cherrypy web server (non blocking)
cherrypy.engine.start()

The cherrypy engine runs in a background thread when the cherrypy engine is started. Callbacks from the TSServer
happen on the ws4py websocket library’s thread(s) for handling received messages.

4. Providing timelines through the TS Server

To make a timeline available to clients, we create a source for that timeline. For example, a
SimpleClockTimelineSource based on a clock object that corresponds to the ticking of progress on the
timeline. We also decide the timeline selector that clients must use to obtain that timeline.

For example, we might create a Timeline Source to represent ticking of a PTS timeline:

from dvbcss.protocol.server.ts import SimpleClockTimelineSource
from dvbcss.clock import Correlation

ptsClock = CorrelatedClock(parentClock=wallClock, tickRate=90000)
ptsTimelineSrc = SimpleClockTimelineSource(timelineSelector="urn:dvb:css:timeline:pts
→˓", wallClock=wallClock, clock=ptsClock)
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# set that ptsClock to start counting from zero starting NOW:
ptsClock.correlation = Correlation(wallClock.ticks, 0)

When we want that timeline to become available to connected clients we add it to the TS Server:

tsServer.attachTimelineSource(ptsTimelineSrc)
tsServer.updateAllClients()

When we make any change (adding or removing timlelines, or changing a timeline in any way) then we must call
TSServer.updateAllClients() to ensure Control Timestamp messages are sent immediately to all connected
clients to notify them of any changes.

Any new client connections or existing connections, that ask for that timeline (using the timeline selector and matching
the content id) will have the timeline made available to them.

If at some point the relationship between PTS and wall clock changes, or the clock availability changes, then we must
instruct the TS Server to send new Control Timestamps out if needed:

# lets reset the pts timeline position to zero again
ptsClock.correlation = Correlation(wallClock.ticks, 0)
tsServer.updateAllClients()

When we want to make the timeline unavailable, we can simply update the availability of the clock:

ptsClock.setAvailability(False)
tsServer.updateAllClients()

Or if we wish to stop more permanently, we can instead detatch the timeline source from the TS Server:

tsServer.removeTimelineSource(ptsTimelineSrc)
tsServer.updateAllClients()

If there are clients connected that have asked for that timeline, then the update call will cause Control Timestamps to
be sent to them that indicate that the timeline is no longer available.

We can also change the contentId for which the timelines are being provided. If we do this, then again, it may change
whether timelines are available to any currently connected clients:

5. Changing content id

tsServer.contentId = "http://myservice.com/new-content-id"
tsServer.updateAllClients()

What does TSServer do for you and what does it not?

TSServer handles the connection and disconnection of clients without requiring any further intervention. It handles
the initial setup-data message and uses the information in that to determine which TimelineSource it should obtain
Control Timestamps from. It will also automatically ensure ‘null’ Control Timestamp messages are sent if there is no
suitable timeline source.

Your code (or a TimelineSource that you create) must call the updateClient() or updateAllClients()
to notify the TSServer that it needs to potentialy send updated Control Timestamps to clients.
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More about Timeline Sources

A timeline source is any object that implements the methods defined by the TimelineSource base class.

Exising timeline source implementations

Two implementations are provided:

• SimpleTimelineSource is a timeline source where you directly specify the Control Timestamp that will
be sent to clients.

• SimpleClockTimelineSource is a timeline source where Control Timestamps are generated from
Clock objects representing the position of the timeline and the Wall Clock.

The CSS-TS server does not automatically push out new Control Timestamps to connected clients. It will only do so
when the updateAllClients() or updateClient() methods are called. This allows you to do things like
swap out and replace a timeline source object without causing spurious Control Timestamps to be sent.

Creating new Timeline Sources

Create new Timeline Source types by subclasing TimelineSource and, at minimum, implementing the stubs
recognisesTimelineSelector() and getControlTimestamp().

For example, here is a timeline source that recognises a timeline selector “urn:pretend-timeline:N” where N is the ticks
per second of the timeline. The progress of this timeline is controlled by the code outside of this object periodcally
calling the setTimelinePositionNowmethod. It needs a clock object representing the WallClock to be passed
to it. It can serve different tick rates to different clients.

from dvbcss.protocol.server.ts import TimelineSource
from dvbcss.protocol.ts import ControlTimestamp, Timestamp
from dvbcss.clock import Correlation
import re

class PretendTimelineSource(TimelineSource):
def __init__(self, wallClock):

super(PretendTimelineSource,self).__init__()
self.wallClock = wallClock
self.correlation = Correlation(0,0)

def recognisesTimelineSelector(self, timelineSelector):
return re.match("^urn:pretend-timeline:([0-9]+)$", timelineSelector)

def getControlTimestamp(self, timelineSelector):
match = re.match("^urn:pretend-timeline:([0-9]+)$", timelineSelector)
if not match:

raise RuntimeError("This should never happen.")
elif self.correlation is None:

# timeline not yet available, so return 'null' control timestamp
return ControlTimestamp(Timestamp(None, self.wallClock.ticks), None)

else:
tickRate = int(match.group(1))
contentTime = tickRate * self.correlation.childTicks
wallClockTime = self.correlation.parentTicks
speed = 1
return ControlTimestamp(Timestamp(contentTime, wallClockTime), speed)
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def setTimelinePositionNow(self, timelineSecondsNow):
self.correlation = Correlation(self.wallClock.nanos, timelineSecondsNow)

The base class also has stub methods to support notification of when a sink is attached to the timeline source and also
methods to notify of when a particular timeline selector is being requested by at least one client and when it is no
longer required by any clients. See the documentation for TimelineSource for more details.

Classes

TSServer

class dvbcss.protocol.server.ts.TSServer(contentId, wallClock, maxConnectionsAllowed=-1,
enabled=True)

Implements a server for the CSS-TS protocol that serves timelines provided by sources that are plugged into this
server object.

Use by instantiating. You may subclass if you wish to optionally override the following methods:

• onClientConnect()

• onClientDisconnect()

• onClientMessage()

• onClientSetup()

When the server is “disabled” it will refuse attempts to connect by sending the HTTP status response 403
“Forbidden”.

When the server has reached its connection limit, it will refuse attempts to connect by sending the HTTP status
response 503 “Service unavailable”.

This object has the following properties:

• enabled (read/write) controls whether the server is enabled

• contentId (read/write) controls the contentId that timelines are being served for

• handler (read) the class that must be passed as part of the cherrypy configuration for the URL path this
server is attached to.

The contentId and enabled attributes can be changed at runtime. Whether the contentId matches that
provided by a client when it initially connects is part of determining whether the timeline is available to the
client.

Use attachTimelineSource() and removeTimelineSource() to add and remove sources of time-
lines. Adding or removing a source of a timeline will affect availablilty of a timeline to a client.

This server does not automatically send Control Timestamp messages to clients. After you make a change (e.g.
to the contentId or a state change in a timeline source or attaching or removing a timeline source) then you
must call updateAllClients() to cause messages to be sent.

The only exception to this is changes to the enabled state which takes effect immediately.

Initialisation takes the following parameters:

Parameters

• contentId (str) – The content-id for which timelines will be made available.

• wallClock (clock) – The wall clock

2.2. CSS-TS protocol 45

https://docs.python.org/2/library/functions.html#str


"pydvbcss - a library implementing DVB protocols for Companion Screen Synchronisation,
Release 0.5.1-release

• maxConnectionsAllowed (int) – (int, default=-1) Maximum number of concurrent
connections to be allowed, or -1 to allow as many connections as resources allow.

• enabled (bool) – Whether this server starts off enabled or disabled.

contentId
(read/write str) The content ID for all timelines currently being served. Can be changed at runtime.

handler
Handler class for new connections.

When mounting the CII server with cherrypy, include in the config dict a key ‘tools.dvb_cii.handler_cls’
with this handler class as the value.

attachTimelineSource(timelineSource)
Attach (add) a source of a timeline to this CSS-TS server. This causes the timeline to become available
immediately to any connected clients that might be requesting it.

This causes the addSink() method of the timeline source to be called, to notify it that this CSS-TS
server is now a recipient (sink) for this timeline.

Parameters timelineSource – Any object implementing the methods of the
TimelineSource base class

enabled
(read/write bool) Whether this server endpoint is enabled (True) or disabled (False).

Set this property enable or disable the endpoint.

When disabled, existing connections are closed with WebSocket closure reason code 1001 and new at-
tempts to connect will be refused with HTTP response status code 403 “Forbidden”.

getConnections()

Returns dict mapping a WebSocket object to connection related data for all connections to
this server. This is a snapshot of the connections at the moment the call is made. The
dictionary is not updated later if new clients connect or existing ones disconnect.

getDefaultConnectionData()
Internal method. Creates empty ‘connection data’ for the connection consisting of: a dict: {
"setup":None, "prevCt":None, "aptEptLpt":None }

This reflects that no setup-data has been received yet, and no Control Timestamps have been sent, and no
AptEptLpt has been received either

onClientAptEptLpt(webSock, apteptlpt)
Called when a client has sent an updated AptEptLpt message

This is a stub for this method. Sub-classes should implement it.

Parameters

• webSock – The connection from the client.

• aptEptLpt – (AptEptLpt) object representing the received timestamp message.

onClientConnect(webSock)
Called when a client establishes a connection.

If you override, make sure you call the superclass implementation of this method.

Parameters webSock – The connection from the client.

onClientDisconnect(webSock, connectionData)
Called when a client disconnects.
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If you override, make sure you call the superclass implementation of this method.

Parameters

• webSock – The connection from the client.

• connectionData – A dict containing data relating to this (now closed) connection

onClientMessage(webSock, message)
Called when a message is received from a client.

If you override, make sure you call the superclass implementation of this method.

Parameters

• webSock – The connection from the client.

• msg – (Message) WebSocket message that has been received. Will be either a Text or
a Binary message.

onClientSetup(webSock)
Called when a client has connected and submitted its SetupData message to provide context for the con-
nection.

This is a stub for this method. Sub-classes should implement it.

Parameters webSock – The connection from the client.

removeTimelineSource(timelineSource)
Remove a source of a timeline from this CSS-TS server. This causes the timeline to become unavailable
immediately to any connected clients that are using it.

This causes the removeSink() method of the timeline source to be called, to notify it that this CSS-TS
server is no longer a customer (sink) for this timeline.

Parameters timelineSource – Any object implementing the methods of the
TimelineSource base class

updateAllClients()
Causes an update to be sent to all clients that need it (i.e. if the ControlTimestamp that would be sent now
is different to the one most recently sent to that client)

updateClient(webSock)
Causes an updated ControlTimestamp to be sent to the WebSocket connection specified.

The ControlTimestamp is only sent if it is different to the last time this was done for this connection.

The value of the Control Timestamp is determined by searching all attached timeline sources to find one
that can supply a Control Timestamp for this connection.

TimelineSource

class dvbcss.protocol.server.ts.TimelineSource
Base class for timeline sources.

Subclass and implement the stub methods to create Timeline Source:

• recognisesTimelineSelector()

• getControlTimestamp()

If your source needs to be informed of when a timeline is needed and when it becomes no longer needed (e.g.
so you can allocate/deallocate resources needed to extract it) then also implement these stub methods:
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• timelineSelectorNeeded()

• timelineSelectorNotNeeded()

You can also optionally override the following methods, provided your code still calls through to the base class
implementations:

• attachSink() (see note)

• removeSink() (see note)

The attachSink() and removeSink() methods will be called by parties interested in the TimelineSource
(such as a TSServer) when they wish to use the timeline source. The base class implementations of these
methods maintain the sinks attribute as a dictionary indexed by sink.

Note: When subclassing attachSink() and removeSink() remember to call the base class implementa-
tions of these methods.

attachSink(sink)
Called to notify this Timeline Source that there is a sink (such as a TSServer) that wishes to use this
timeline source.

Parameters sink – The sink object (e.g. a TSServer)

A TimelineSource implementation can use knowledge of what sinks are attached in whatever way it wishes.
For example: it might use this to proactively call updateAllClients() on the attached TSServer
when its Timeline’s relationship to wall clock changes in some way. It is up to the individual implementa-
tion whether it chooses to do this or not.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

getControlTimestamp(timelineSelector)
Get the Control Timestamp from this Timeline Source given the supplied timeline selector.

This method will only be called with timelineSelectors for which the
recognisesTimelineSelector() method returned True.

This is a stub for this method. Sub-classes should implement it.

The return value should be a ControlTimestamp object. If the timeline is known to be unavailable,
then the contentTime and speed properties of that Control Timestamp must be None.

If, however, you want the TS Server to not send any Control Timestamp to clients at all, then return None
instead of a Control Timestamp object. Use this when, for example, you are still awaiting an result from
code that has only just started to try to extract the timeline and doesn’t yet know if there is one available
or not.

Parameters timelineSelector – (str) A timeline selector supplied by a CSS-TS client

Returns A ControlTimestamp object for this timeline source appropriate to the timeline
selector, or None if the timleine is recognised no Control Timestamp should yet be provided.

recognisesTimelineSelector(timelineSelector)
This is a stub for this method. Sub-classes should implement it.

Parameters timelineSelector – (str) A timeline selector supplied by a CSS-TS client

Returns True if this Timeline Source can provide a Control Timestamp given the specified time-
line selector

removeSink(sink)
Called to notify this Timeline Source that there is a sink that no longer wishes to use this timeline source.

Parameters sink – The sink object
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NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

timelineSelectorNeeded(timelineSelector)
Called to notify this Timeline Source that there is a need to provide a timeline for the specified timeline
selector.

Parameters timelineSelector – (str) A timeline selector supplied by a CSS-TS client
that has not been specified by any other currently connected clients.

This is useful to, for example, initiate processes needed to extract the timeline for the specified timeline
selector. You will not receive repeats of the same notification.

If the timeline is no longer needed then the timelineSelectorNotNeeded() function will be called
to notify of this. After this, then you might be notified again in future if a timeline for the timeline selector
becomes needed again.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

timelineSelectorNotNeeded(timelineSelector)
Called to notify this Timeline Source that there is no longer a need to provide a timeline for the specified
timeline selector.

Parameters timelineSelector – (str) A timeline selector that was previously needed by
one or more CSS-TS client(s) but which is no longer needed by any.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

SimpleTimelineSource

class dvbcss.protocol.server.ts.SimpleTimelineSource(timelineSelector, controlTimes-
tamp, *args, **kwargs)

A simple Timeline Source implementation for a fixed timeline selector and where the Control Timestamp is
specified manually.

Initialisation takes the following parameters:

Parameters

• timelineSelector – (str) The exact timeline selector that this Timeline Source will
provide Control Timestamps for.

• controlTimestamp – (ControlTimestamp) The initial value of the Control Times-
tamp

attachSink(sink)
Called to notify this Timeline Source that there is a sink (such as a TSServer) that wishes to use this
timeline source.

Parameters sink – The sink object (e.g. a TSServer)

A TimelineSource implementation can use knowledge of what sinks are attached in whatever way it wishes.
For example: it might use this to proactively call updateAllClients() on the attached TSServer
when its Timeline’s relationship to wall clock changes in some way. It is up to the individual implementa-
tion whether it chooses to do this or not.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

removeSink(sink)
Called to notify this Timeline Source that there is a sink that no longer wishes to use this timeline source.

Parameters sink – The sink object

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.
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timelineSelectorNeeded(timelineSelector)
Called to notify this Timeline Source that there is a need to provide a timeline for the specified timeline
selector.

Parameters timelineSelector – (str) A timeline selector supplied by a CSS-TS client
that has not been specified by any other currently connected clients.

This is useful to, for example, initiate processes needed to extract the timeline for the specified timeline
selector. You will not receive repeats of the same notification.

If the timeline is no longer needed then the timelineSelectorNotNeeded() function will be called
to notify of this. After this, then you might be notified again in future if a timeline for the timeline selector
becomes needed again.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

timelineSelectorNotNeeded(timelineSelector)
Called to notify this Timeline Source that there is no longer a need to provide a timeline for the specified
timeline selector.

Parameters timelineSelector – (str) A timeline selector that was previously needed by
one or more CSS-TS client(s) but which is no longer needed by any.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

SimpleClockTimelineSource

class dvbcss.protocol.server.ts.SimpleClockTimelineSource(timelineSelector, wall-
Clock, clock, speed-
Source=None, autoUp-
dateClients=False)

Simple subclass of TimelineSource that is based on a clock object.

The Control Timestamp returned by the getControlTimestamp() method reflects the state of the clock.

Note that this does not result in a new Control Timestamp being pushed to clients, unless you set the auto
update parameter to True when initialising this object. By default (with no auto-updating), you still have to call
updateAllClients() manually yourself to cause that to happen.

Use auto-updating with caution: if you have multiple Timeline Sources driven by a common clock, then a
change to that clock will cause each Timeline Source to call updateAllClients(), resulting in multiple
unnecessary calls.

The tick rate is fixed to that of the supplied clock and timeline selectors are only matched as an exact match.

The speed property of the clock will be used as the timelineSpeedMultiplier value, unless a different clock is
provided as the optional speedSource argument at initialisation. This is useful if the speed of the timeline is
set by setting the speed property of a parent clock, and not the speed property of this clock (e.g. in situations
where a single clock represents timeline progress but there are multiple clocks as children of that to represent
the timeline on different scales - e.g. PTS, TEMI etc).

The availability of the clock is mapped to whether the timeline is available.

SimpleClockTimelineSource generates its correlation by observing the current tick value of the wallClock and
the provided clock whenever a ControlTimestamp needs to be provided.

Initialisation takes the following parameters:

Parameters

• timelineSelector – (str) The timeline selector that this TimelineSource will provide
Control Timestamps for
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• wallClock – (ClockBase) A clock object representing the Wall Clock

• clock – (ClockBase) A clock object representing the flow of ticks of the timeline.

• speedSource – (None or ClockBase) A different clock object from which the time-
lineSpeedMultiplier is determined (from the clock’s speed property), or None if the clock
for this is not different.

• autoUpdateClients – (bool) Automatically call updateAllClients() if there is a
change in the clock or wallClock

notify(cause)
Called by clocks to notify of changes (because this class binds itself to the clock object).

If auto-updating is enabled then this will result in a call to updateAllClients() on all sinks.

timelineSelectorNeeded(timelineSelector)
Called to notify this Timeline Source that there is a need to provide a timeline for the specified timeline
selector.

Parameters timelineSelector – (str) A timeline selector supplied by a CSS-TS client
that has not been specified by any other currently connected clients.

This is useful to, for example, initiate processes needed to extract the timeline for the specified timeline
selector. You will not receive repeats of the same notification.

If the timeline is no longer needed then the timelineSelectorNotNeeded() function will be called
to notify of this. After this, then you might be notified again in future if a timeline for the timeline selector
becomes needed again.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

timelineSelectorNotNeeded(timelineSelector)
Called to notify this Timeline Source that there is no longer a need to provide a timeline for the specified
timeline selector.

Parameters timelineSelector – (str) A timeline selector that was previously needed by
one or more CSS-TS client(s) but which is no longer needed by any.

NOTE: If you override this in your subclass, ensure you still call this implementation in the base class.

Functions

ciMatchesStem

dvbcss.protocol.server.ts.ciMatchesStem(ci, stem)
Checks if a content identifier stem matches a content identifier. A match is when the content identifier starts
with the stem and is the same length as the stem, or longer.

Parameters

• ci (str or OMIT) – Content identifier

• stem (str) – Content identifier stem

Returns True if the supplied content identifier stem (stem) matches the content identifier. If the ci
is OMIT then always returns False.
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isControlTimestampChanged

dvbcss.protocol.server.ts.isControlTimestampChanged(prev, latest)
Checks whether a new (latest) Control Timestamp is different when compared to a old (previous) Control Times-
tamp.

Note that this does not check equivalency (if two Control Timestamps represent the same mapping between Wall
clock time and content time) but instead checks if the property values comprising the two timestamps are exact
matches.

Parameters

• prev – None or a previous ControlTimestamp

• latest – A new ControlTimestamp

Returns True if the previous Control Timestamp is supplied is None, or if any of its properties differ
in value to that of the latest Control Timestamp

Throws ValueError The new Control Timestamp supplied is None instead of a Control Timetamp

This package provides objects for representing messages exchanged via the DVB CSS-TS protocol and for imple-
menting clients and servers.

The TS protocol is a mechanism for a server to share timeline position and playback speed with a client. In effect it
enables a client to synchronise its understanding of the progress of media presentation with that of a server, in terms
of a particular timeline.

The client initially sends a SetupData message to specify what timeline it wants to synchronise in terms of. The
server then periodically sends ControlTimestampmessages to inform the client of the state of presentation timing.
The client can also send AptEptLpt (Actual, Earliest and Latest Presentation Timestamp) messages to the server to
inform it of its playback timing and range of playback timings it can achieve.

The client implementation in this library can control a CorrelatedClock, synchronising it to the timeline. The
server implementation in this library uses CorrelatedClock objects as its source of timelines that it is to share
with clients.

Modules for using the CSS-TS protocol:

• dvbcss.protocol.ts : objects for representing and packing/unpacking the CSS-TS protocol messages.

• dvbcss.protocol.client.ts : implementation of a client for a CSS-TS connection.

• dvbcss.protocol.server.ts : implementation of a server for a CSS-TS connection.

2.3 CSS-WC protocol

2.3.1 CSS-WC Protocol Introduction

Here is a quick introduction to the CSS-WC protocol. For full details, refer to the DVB specification ETSI 103
286 part 2.

The CSS-WC protocol is for establishing Wall clock synchronisation - meaning that there is a common synchronised
sense of time (a “wall clock”) between the server (e.g. TV) and client (e.g. companion). This common wall clock is
used in the CSS-TS protocol to make it immune to network delays.

The client uses the information carried in the protocol to estimate the server wall clock and attempt to compensate for
network latency. This is a connectionless UDP protocol similar to NTP’s client-server mode of operation, but much
simplified and not intended to set the system real-time clock.
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• Sequence of interaction

• Synchronising the wall clock

• Message format

Sequence of interaction

The client is assumed to already know the host and port number of the CSS-WC server (usually from the information
received via the CSS-CII protocol).

1. The client sends a Wall Clock protocol “request” message to the server.

2. The server sends back a Wall Clock protocol “response” message to the client.

3. If the server is able to more accurately measure when it sent a message after it has done so, then it can optionally
send a “follow-up response” with this information.

The client repeats this process as often as it needs to.

Synchronising the wall clock

The client notes the time at which the request is sent and the response received, and by the server including the times
at which it received the request and sent its response. Using this information the client can estimate the relationship
between the time of its clock and that of the server. It can also calculate an error bound on this (known as dispersion):

Relationship expressed as an estimated offset:

• Offset between local clock and server wall clock is (( t3 + t2 ) - ( t4 + t1 )) / 2

Relationship expressed as a correlation:

• When local clock is ( t1 + t4 )/2

• ... the server wall clock is estimated to be ( t2 + t3 )/2

The DVB specification (part 2) contains an annex that goes into more detail on the theory of how to calculate dispersion
and how a client can use this as part of a simple algorithm to align its wall clock.
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Message format

Requests and responses both have the same fixed 32 byte binary message format. A WCMessage carries the following
fields:

• Protocol version identifier

• Message type (request / response / response-before-follow-up / follow-up)

• The precision of the server’s wall clock

• The maximum frequency error of the server’s wall clock

• Timevalues (in NTP 64-bit time format, comprising a 32bit word carrying the number of nanoseconds and
another 32bit word containing the number of seconds)

– Originate timevalue: when the client sent the request.

– Receive timevalue: when the server received the request.

– Transmit timevalue: when the server sent the response.

The precision, max freq error, receive timevalue and transmit timevalue fields only have meaning in a response from
a server. Their values do not matter in requests.

2.3.2 CSS-WC Message objects

Module: dvbcss.protocol.wc

• Example usage

• Classes

– WCMessage

– Candidate

The WCMessage class represents a CSS-WC protocol message.

The Candidate class represents the measurement resulting from a request-response exchange of messages with a
server. This is a “candidate” that could be used to update the client’s estimate of the Wall Clock and is therefore used
by a Wall Clock Client algorithm. A candidate is calculated from a WCMessage that represents a Wall Clock protocol
response message received from a server.

A candidate can calculate the correlation needed to set a CorrelatedClock to model the server’s Wall Clock.

Example usage

Creating a request message at a Wall Clock Client:

>>> from dvbcss.protocol.wc import WCMessage
>>> import time

>>> t1 = time.time() * 1000000000

>>> msg = WCMessage(msgtype=WCMessage.TYPE_REQUEST, precision=-10,
→˓maxFreqError=256*50, originateNanos=t1, receiveNanos=0, transmitNanos=0)
>>> packedMessage = msg.pack()
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>>> packedMessage
"\x00\x00\xf6\x00\x00\x002\x00TvH
→˓'3\xf5\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"

Processing a received response message at a Wall Clock Client:

>>> from dvbcss.protocol.wc import Candidate

>>> t4 = <nanoseconds-at-which-message-was-received>
>>> msg = WCMessage.unpack(receivedData)
>>> msg.msgtype
1
>>> c = Candidate(msg, t4)
>>> c.rtt
459734573

Creating a correlation to configure a :class:‘‘dvbcss.clock.CorrelatedClock‘ representing the client estimate of the
server’s wall clock:

>>> corr = c.calcCorrelationFor(wallClock, localMaxFreqErrorPpm=wallClock.
→˓getRootMaxFreqError())
>>> wallClock.correlation = corr

Classes

WCMessage

class dvbcss.protocol.wc.WCMessage(msgtype, precision, maxFreqError, originate-
Nanos, receiveNanos, transmitNanos, originalO-
riginate=None)

Create object representing a CSS-WC wall clock request or response message.

Initialisation takes the following parameters:

Parameters

• msgtype (int) – Type of message. One of: TYPE_REQUEST,
TYPE_RESPONSE, TYPE_RESPONSE_WITH_FOLLOWUP and
TYPE_FOLLOWUP

• precision (int) – Precision (of the server’s wall clock) encoded in log base 2
seconds between -128 and +127 inclusive.

• maxFreqError (int) – Maximum frequency error (of the server’s wall clock) in
units of 1/256ths ppm.

• originateNanos (int) – Originate timevalue in integer number of nanoseconds

• receiveNanos (int) – Receive timevalue in integer number of nanoseconds

• transmitNanos (int) – Transmit timevalue in integer number of nanoseconds

• originalOriginate (None or (int, int)) – Optional original encoding of
the originate timevalue as (seconds, nanos). Overrides originateNanos if not None.

The originalOriginate parameter, if not None, overrides the originateNanos parameter.

Convert to and from a string containing the binary encoding of this message using the pack()
method and unpack() class method.
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msgtype
(read/write int) Type of message. 0=request, 1=response, 2=response-with-followup, 3=fol-
lowup

precision
(read/write int) Precision encoded in log base 2 seconds between -128 and +127 inclusive.
For example: -10 encodes a precision value of roughly 0.001 seconds.

maxFreqError
(read/write int) Maximum frequency error in units of 1/256ths ppm. For example: 12800
encodes a max freq error of 50ppm.

originateNanos
(read/write int) Originate timevalue in integer number of nanoseconds

receiveNanos
(read/write int) Receive timevalue in integer number of nanosecond

transmitNanos
(read/write int) Transmit timevalue in integer number of nanosecond

originalOriginate
(read/write None or (int, int)) Optional original encoding of the originate timevalue as
(seconds, nanos). Overrides originateNanos when the message is packed if the value is not
None.

TYPE_FOLLOWUP = 3
Constant: Message type 3 “follow-up response”

TYPE_REQUEST = 0
Constant: Message type 0 “request”

TYPE_RESPONSE = 1
Constant: Message type 1 “response with no follow-up”

TYPE_RESPONSE_WITH_FOLLOWUP = 2
Constant: Message type 2 “response to be followed by a follow-up response”

copy()
Duplicate this wallclock message object

classmethod encodePrecision(precisionSecs)
Convert a precision value in seconds to the format used in these messages

getMaxFreqError()
Get frequency error in ppm

getPrecision()
Get precision value in fractions of a second

pack()
Pack wall clock message into binary representation.

Returns String containing the wall clock message in final bitstream form.

setMaxFreqError(maxFreqErrorPpm)
Set freq error given a freq error represented as ppm

setPrecision(precisionSecs)
Set precision value given a precision represented as factions of a second

classmethod unpack(data)
Class method that takes a string containing a wall clock message and unpacks it to a
WCMessage object.
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Parameters data (str) – String containing binary representation of a Wall Clock
message as received from a client or server.

Returns WCMessage object representing the wall clock message.

Candidate

class dvbcss.protocol.wc.Candidate(msg, nanosRx)
This object represents a measurement “candidate” to be fed into a Wall Clock Client’s algorithm. It
is calculated from a WCMessage received as a response from a Wall Clock server.

This object requires that response comes from a Wall Clock Client that measured the parent of the
clock that will be used to model the wall clock locally.

Initialisation takes the following parameters:

Parameters

• msg (WCMessage) – Response message received from server

• nanosRx (int) – the time, in nanoseconds, at which it was received (from the
server)

Pass in a received WallClockMessage that is a response and this will represent the candidate data
derived from that request-response interaction.

Populates properties of this objects with the candidate information. t1, t2, t3 and t4 represent
the times of message sending and receiving as shown below:

It also calculates and provides, as properties, the round-trip time (rtt) and clock offset estimate
(offset) based on this measurement.

All data is in units of nanoseconds, except for precision which is measured in seconds, and maximum
frequency error which is measured in ppm.

A helper function calcCorrelationFor() makes it easy to calculate the Correlation
needed to take this measurment candidate and use it to control a CorrelatedClock.

t1 = msg.originateNanos
(read only) The time “t1” at which the request was sent in the request-response measurement
(nanoseconds)

t2 = msg.receiveNanos
(read only) The time “t2” at which the request was received in the request-response measure-
ment (nanoseconds)
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t3 = msg.transmitNanos
(read only) The time “t3” at which the response was sent in the request-response measurement
(nanoseconds)

t4 = nanosRx
(read only) The time “t4” at which the response was received in the request-response measure-
ment (nanoseconds)

offset = ((t3+t2)-(t4+t1))/2
(read only) Server<->client clock offset (nanoseconds)

rtt = (t4-t1)-(t3-t2)
(read only) Round trip time (nanoseconds)

isNanos = True

precision = msg.getPrecision()
(read only) The precision reported by the server in its response (units of factions of a second)

maxFreqError = msg.getMaxFreqError()
(read only) The maximum frequency error reported by the server in its response (units of ppm)

msg = WCMessage
(read only WCMessage) The response message from which this candidate was derived

calcCorrelationFor(clock, localMaxFreqErrorPpm=None)
Calculates and returns the Correlation for a CorrelatedClock that is equivalent to this
candidate.

The returned correlation can then be applied to the clock to model the time at the server. This
includes the error bounds information needed to enable the clock to correctly calculate disper-
sion.

Parameters
• clock – CorrelatedClock that will model the server clock. Its parent must

be the one that was measured for t1 and t4 this candidate.
• localMaxFreqErrorPpm – Optional. By defeault the
getRootMaxFreqError() of the clock is used. Provide this value to
override that.

Returns Correlation representing this candidate, and that can be used with the
CorrelatedClock.

Note: The parameters of the correlation are calculated by this function as follows:
• parentTicks = (t1’ + t4’) / 2
• childTicks = (t2’ + t3’) / 2
• initialError = precision + ( rtt/2 + mfeC * (t4 - t1) + mfeS * (t3 - t2) ) / 109

• errorGrowthRate = mfeC + mfeS
Where:

• t1, t2, t3 and t4 are in units of nanoseconds
• t1’ and t4’ are the same as t1 and t4 but converted to ticks of the parent of the specified

clock
• t2’ and t3’ are the same as t2 and t3 but converted to ticks of the specified clock
• mfeC is the clock’s getRootMaxFreqError(), converted from ppm to a fraction by

dividing by 106

• mfeS is the max freq error reported by the server, converted from ppm to a fraction by
dividing by 106

New in version 0.4.
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toTicks(clock)
Returns a new Candidate object the same as this one but whose measurements have been con-
verted to match the timescale of a clock.

Raises NotImplementedError – This function has been deprecated.

Warning: Deprecated since version 0.4: This function has been deprecated because of
the architectural change to taking taking readings from a different clock to the one that is
adjusted.

Use calcCorrelationFor() instead as this will perform the necessary conversion to
clock tick rate units as well as creating the correlation needed to configure that clock.

2.3.3 CSS-WC Clients

Modules: dvbcss.protocol.client.wc | dvbcss.protocol.client.wc.algorithm

• Using a Wall Clock Client

• Algorithms

– Dispersion algorithm

– Simple algorithm

– Writing new algorithms

– Composable Filter and prediction algorithm

* Round-trip time threshold Filter

* Lowest dispersion candidate filter

* Simple Predictor

* Writing your own Filter

* Writing your own Predictor

• Classes

– WallClockClient

– Dispersion algorithm

– Most recent measurement algorithm

– Filter and Prediction composable algorithms

* Filters

* Predictors

• Functions

– Filter and Prediction algorithm creator

– Candidate quality calculator

The WallClockClient class provides a complete Wall Clock Client implementation. It is used in conjunction with
an algorithm for adjusting a clock object so that it mirrors the server’s Wall Clock.
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Using a Wall Clock Client

Recommended simplest use is to instantiate a WallClockClient and provide it with an instance of the
LowestDispersionCandidate algorithm to control how it updates a clock.

A simple example that connects to a wall clock server at 192.168.0.115 port 6677 and sends requests once per second:

from dvbcss.clock import SysClock as SysClock
from dvbcss.protocol.client.wc import WallClockClient
from dvbcss.protocol.client.wc.algorithm import LowestDispersionCandidate

sysClock=SysClock()
wallClock=CorrelatedClock(sysClock,tickRate=1000000000)

algorithm = LowestDispersionCandidate(wallClock,repeatSecs=1,timeoutSecs=0.5)

bind = ("0.0.0.0", 6677)
server = ("192.168.0.115", 6677)

wc_client=WallClockClient(bind, server, wallClock, algorithm)
wc_client.start()

# wall clock client is now running in the background

After the start() method is called, the WallClockClient runs in a separate thread and execution continues.

WallClockClient is used by providing it with an object implementing the clock synchronisation algorithm. The
Wall Clock client handles the protocol interaction (sending the requests and parsing the responses) at the times speci-
fied by the algorithm and passes the results of each request-response measurement (a Candidate) to the algorithm.
The algorithm then adjusts the clock.

Changed in version 0.4: The measurement process involves taking a reading from the local clock when the request
is about to be sent, and when the response is received. This measurement is taken from the parent of the clock you
provide. The candidate represents a possible relationship between that (parent) clock and the Wall Clock of the server
given the results of the request-response measurement. The algorithm processes this and makes a decision as to the
Correlation that is to be used.

Although the WallClockClient class does not require the tickrate of the Wall Clock to be 1 tick per nanosecond, it
is recommended to set it as such. This is because the next step (using the CSS-TS protocol) assumes a Wall Clock
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ticking at this rate.

Algorithms

The algorithm object determines when (and how often) a WallClockClient sends CSS-WC protocol requests and
processes the results of requests and responses to adjust the clock object representing the Wall Clock.

Dispersion algorithm

The LowestDispersionCandidate algorithm is the recommended algorithm. It uses the candidate with the
lowest dispersion.

Simple algorithm

The MostRecent algorithm is a simple naive algorithm that uses the most recent candidate irrespective of its quality
(e.g. how long the round-trip time of the measurement was)

Writing new algorithms

An algorithm is an object that has the following method:

.algorithm(self)
A python generator function that yields whenever it wants a Wall Clock protocol measurement to be taken:

candidateOrNone = yield timeoutSecs

The yield must pass a timeout in seconds. This is the maximum amount of time the Wall Clock client will wait
for a response to its request before timing out.

Changed in version 0.4: The yield statement will return either None or a Candidate object representing the
result of the measurement.

The algorithm can then use the Candidate object in its algorithm for estimating the wall clock (and in the case
of most practical implementations: adjusting a clock object).

Here is an example of a simple naive algorithm that adjusts a CorrelatedClock object using the most recent
measurement, irrespective of influencing factors such as previous measurements or network latency (round trip time).
It makes requests at most once per second and has a timeout on waiting for responses of 0.5 seconds:

class NaiveAlgorithm(object):

def __init__(self,clock):
self.clock = clock

def algorithm(self):
while True:

candidate=(yield 0.5)
if candidate is not None:

self.clock.correlation = candidate.calcCorrelationFor(self.clock)
time.sleep(1.0)
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Composable Filter and prediction algorithm

There is also a simple modular framework for building up an algorithm out of two parts:

• Filters - processes measurement candidates, determining whether to reject them.

• A Predictor - takes the measurement candidates outputted from the filtering step and use them to adjust the
clock.

Use the FilterAndPredict() function to compose zero, one or more Filters, and a Predictor into an algorithm
that can be used with a WallClockClient.

Changed in version 0.4: When using this algorithm, you provide a CorrelatedClock object to it, whose parent
is the clock given to the WallClockClient. This algorithm controls the CorrelatedClock object by settings
its correlation property to that returned by the predictor. The parent of this clock is the clock used by the
WallClockClient in generating the measurement candidates. So the job of the predictor is to determine the best
correlation for modelling the relationship between that (parent) clock and the wall clock of the server.

Here is a simple example that uses a simple predictor and a round-trip-time threshold filter:

from dvbcss.clock import CorrelatedClock, SysClock
from dvbcss.protocol.client.wc.algorithm import FilterAndPredict, FilterRttThreshold,
→˓PredictSimple
from dvbcss.protocol.client.wc import WallClockClient

sysClock = SysClock(tickRate=1000000000)
wallClock = CorrelatedClock(parentClock=sysClock, tickRate=1000000000)

filters = [ FilterRttThreshold(thresholdMillis=10.0) ]
predictor = PredictSimple(wallClock)

algorithm = FilterAndPredict(wallClock, repeatSecs, timeoutSecs, filters, predictor)

bind = ("0.0.0.0", 6677)
server = ("192.168.0.115", 6677)

wc_client=WallClockClient(bind, server, wallClock, algorithm)
wc_client.start()

The Clock object given to the algorithm must be CorrelatedClock whose parent is the clock object provided to
the WallClockClient object.

Round-trip time threshold Filter

The FilterRttThreshold class implements a filter that eliminates any candidate where the round-trip time ex-
ceeds a threshold.

Lowest dispersion candidate filter

The FilterLowestDispersionCandidate class implements a filter that eliminates any candidate if it does
not have a lower dispersion that any candidate that came before it.
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Simple Predictor

The PredictSimple class is a simple predictor that uses the candidate most recently provided to it and directly
transforms that into a dvbcss.clock.Correlation.

Writing your own Filter

You can write your own Filter by creating a class with the following method defined:

.checkCandidate(self, candidate)

Parameters candidate – A (dict) containing two Candidate objects representing
the result of the measurement in units of ticks (dict key “ticks”) and units of nanosec-
onds (dict key “nanos”):

Writing your own Predictor

You can write your own Predictor by creating a class with the following methods defined:

.addCandidate(self, candidate)
param candidate A (dict) containing two Candidate objects repre-

senting the result of the measurement in units of of nanoseconds.
This method is called whenever a measurement candidate resulting from a request-
response measurement survives the filtering process.

.predictCorrelation(self)

Returns A Correlation

The returned Correlation must represent the relationship between the clock and its parent, such that
the clock becomes an estimate of the server’s Wall Clock. This must be in the correct units (tick
rate) for the clock and its parent.

Classes

WallClockClient

class dvbcss.protocol.client.wc.WallClockClient((bindaddr, bindport), (dstaddr, dstport),
wallClock, wcAlgorithm)

Simple object implementing the client side of the CSS-TS protocol.

Use by initialising and supplying with an algorithm object and Clock object.

The Candidate objects provided to the algorithm represent the relationship between the parent of the provided
clock and the server’s Wall Clock.

The algorithm is then expected to set the dvbcss.clock.Correlation of the clock object such that it
becomes an estimate of the server’s Wall Clock.

It is recommended to use the LowestDispersionCandidate algorithm.

Initialisation takes the following parameters:

Parameters

• (bindaddr,bindport) – (str, int) A tuple containing the IP address (as a string)
and port (as an int) to bind to to listen for incoming packets
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• (dstaddr,dstport) – (str, int) A tuple containing the IP address (as a string) and
port (as an int) of the Wall Clock server

• wallClock – (clock) The local clock that will be controlled to be a Wall Clock. Mea-
surements will be taken from its parent and candidates provided to the algorithm will repre-
sent the relationship between that (parent) clock and the server’s wall clock.

• wcAlgorithm – (algorithm) The algorithm for the client to use to update the clock.

algorithm = None
(read only) The algorithm object being used with this WallClockClient

start()
Call this method to start the client running. This function call returns immediately and the client proceeds
to run in a thread in the background.

Does nothing if the client is already running.

stop()
Call this method to stop the client running. Returns once the client has stopped.

If the client is not running then nothing happens and this call returns immediately.

Dispersion algorithm

class dvbcss.protocol.client.wc.algorithm.LowestDispersionCandidate(clock,
repeat-
Secs=1.0,
timeout-
Secs=0.2,
local-
MaxFreqEr-
rorPpm=None)

Algorithm that selects the candidate (request-response measurement result) with the lowest dispersion.

Dispersion is a formal measure of the error bounds of the Wall Clock estimate. This value is the sum of possible
error due to:

• measurement precision limitations (at both client and server)

• round-trip time

• maximum potential for oscillator frequency error at the client and at the server server This grows as the
candidate (that was used to most recently adjust the clock) ages.

Note: The Clock object must be the same one that is provided to the WallClockClient, otherwise
this algorithm will not synchronise correctly.

The tick rate of the Clock can be any tick rate (it does not have to be one tick per nanosecond), but too low a
tick rate will limit clock synchronisation precision.

There is a stub callback function provided that you can override (e.g. by subclassing) that will be called when-
ever the clock is adjusted:

• onClockAdjusted()
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The arguments to this method provide details of when the adjustment took place and what adjustment was made.
It also reports the dispersion before and after the adjustment and gives information needed to extrapolate future
dispersions. You can use this, for example, to record the clock dispersion over time.

Initialisation takes the following parameters:

Parameters

• clock – A Correlated object representing that will be adjusted to match the Wall
Clock.

• repeatSecs – (float) The rate at which Wall Clock protocol requests are to be sent (in
seconds).

• timeoutSecs – (float) The timeout on waiting for responses to requests (in seconds).

• localMaxFreqErrorPpm – Optional. Override using the
getRootMaxFreqError() of the clock as the max freq error of the local clock,
and instead use this value. It is the clock maximum frequency error in parts-per-million

getCurrentDispersion()

Returns Current dispersion at this moment in time in units of nanoseconds.

getWorstDispersion()
Returns the worst (greatest) dispersion encountered since the previous time this method was called.

The first time it is called, the value reported will be very large, reflecting the fact that initially dispersion
is high because the client is not yet synchronised.

Returns dispersion

onClockAdjusted(timeAfterAdjustment, adjustment, oldDispersionNanos, newDispersionNanos, dis-
persionGrowthRate)

This method is called immediately after a clock adjustment has been made, and gives details on how the
clock was changed and the effect on the dispersion.

Parameters

• timeAfterAdjustment – The wall clock time (in ticks) immedaitely after the adjust-
ment took place

• adjustment – The amount by which the wall clock instaneously changed (in ticks)

• oldDispersionNanos – The dispersion (in nanoseconds) just prior to adjustment

• newDispersionNanos – The dispersion (in nanoseconds) immediately after adjust-
ment

• dispersionGrowthRate – The rate at which dispersion will continue to grow.

To calculate a future dispersion at time T: futureDispersion = newDispersionNanos + (t-
timeOfAdjustment) * dispersionGrowthRate

This is a stub for this method. Sub-classes should implement it.

Most recent measurement algorithm

class dvbcss.protocol.client.wc.algorithm.MostRecent(clock, repeatSecs=1.0, timeout-
Secs=0.2)

Simple (naive) Wall Clock client algorithm.

Crash locks the supplied clock based on the offset observed in the result of every successful request/response.
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Note: The Clock object must be the same one that is provided to the WallClockClient, otherwise
this algorithm will not synchronise correctly.

The tick rate of the Clock can be any tick rate (it does not have to be one tick per nanosecond), but too low a
tick rate will limit clock synchronisation precision.

Initialisation takes the following parameters:

Parameters

• clock – A CorrelatedClock object representing that will be adjusted to match the
Wall Clock.

• repeatSecs – (float) The rate at which Wall Clock protocol requests are to be sent (in
seconds).

• timeoutSecs – (float) The timeout on waiting for responses to requests (in seconds).

getCurrentDispersion()
Calling this method will always result in ValueError being raised.

Raises ValueError – This algorithm does not model clock synchronisation accuracy.

Filter and Prediction composable algorithms

Filters

class dvbcss.protocol.client.wc.algorithm._filterpredict.FilterRttThreshold(thresholdMillis=1.0)
Simple filter that rejects all candidates where round trip time exceeds a specified threshold.

Parameters thresholdMillis – (float) The threshold to use (in milliseconds)

class dvbcss.protocol.client.wc.algorithm._filterpredict.FilterLowestDispersionCandidate(clock)
Simple filter that will reject a candidate unless its dispersion is lower than that currently being used by the clock.

Note that at initialisation, the clock’s dispersion is forced to +infinity.

Parameters clock – A CorrelatedClock object representing that will be adjusted to match
the Wall Clock.

Predictors

class dvbcss.protocol.client.wc.algorithm._filterpredict.PredictSimple(clock)
Simple naive predictor that chooses the correlation represented by the most recent candidate

Parameters clock – The CorrelatedClock that is to be set.

Note that this predictor does not actually set the clock. It just needs it in order to calculate the correct correlation
for it.
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Functions

Filter and Prediction algorithm creator

dvbcss.protocol.client.wc.algorithm.FilterAndPredict(clock, repeatSecs=1.0, time-
outSecs=0.2, filters=[], predic-
tor=None)

Combines zero, one or more Filters and a Predictor and returns an algorithm for a WallClockClient.

Parameters

• clock – A CorrelatedClock object that will be adjusted to match the Wall Clock.

• repeatSecs – (float) The rate at which Wall Clock protocol requests are to be sent (in
seconds).

• timeoutSecs – (float) The timeout on waiting for responses to requests (in seconds).

• filters – (list of Filters) A list of zero, one or more Filters

• predictor – (Predictor) The Predictor to use, or None to default to PredictSimple

This algorithm controls the CorrelatedClock object by settings its correlation property to that pro-
vided by the predictor.

The parent of this clock is the clock used by the WallClockClient in generating the measurement candi-
dates. So the job of the predictor is always to estimate the Correlation needed by the clock.

Requests are made at the repetition rate specified. If a response is received within the timeout period it is then
it is transformed into a measurement candidate and passed to the filters. Filters are applied in the order you list
them. If a candidate survives filtering, then it is passed to the predictor. Every time a candidate is provided to
the predictor, the correlation returned by the predictor replaces the previous correlation.

Note: The Clock object must be CorrelatedClock whose parent is the clock object that is measured when
generating the candidates.

The tick rate of the Clock can be any tick rate (it does not have to be one tick per nanosecond), but too low a
tick rate will limit clock synchronisation precision.

Candidate quality calculator

This function is used internally by the WallClockClient class.

dvbcss.protocol.client.wc.algorithm.calcQuality(reqMsg, respMsg)
Generate measure of how good the response was. Quality < 0 means response corresponded to a different
request.

Quality = 3 or 4 means it was a response for which no follow-up is expected or a follow-up response.

Quality = 2 means it was a response for which a follow-up is expected

2.3.4 CSS-WC Servers

• Example usage

2.3. CSS-WC protocol 67

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float


"pydvbcss - a library implementing DVB protocols for Companion Screen Synchronisation,
Release 0.5.1-release

• Classes

– WallClockServer

Modules: dvbcss.protocol.server.wc

• Example usage

• Classes

– WallClockServer

The WallClockServer class implements a standalone CSS-WC server.

The server can be started and stopped. While running it runs in its own separate thread of execution in the background.

An example server is provided in this package.

Example usage

To use it, you need to provide a clock object that represents the “wall clock”. Although it is not required, it is
recommended to set the tick rate of that clock to match the required tick rate of the wall clock (1e9 ticks per second).

First, create the clock:

from dvbcss.clock import SysClock

mfe = 45

sysClock = SysClock(tickRate=1000000000, maxFreqErrorPpm=mfe)
wallClock = sysClock

The server will need to know the potential maximum frequency error and measurement precision of the clock. Fortu-
nately the SysClock already estimates this and it is passed through any dependent clocks.

Fortunately the SysClock internally estimates the measurement precision automatically when it is created. It also
defaults to assuming the maximum frequency error is 500ppm, unless you specify otherwise.

Maximum frequency error will depend on oscillator accuracy in the hardware the code is running on, and whether an
NTP client is running (and which therefore may slew the clock).

For example, above we have guessed that the combined worst case of NTP client slew and hardware oscillator accuracy
is approx 45 ppm:

So next we create and start the wall clock server.

from dvbcss.protocol.wc.server import WallClockServer

wcServer = WallClockServer(wallClock)
wcServer.start()
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Classes

WallClockServer

class dvbcss.protocol.server.wc.WallClockServer(wallClock, precision=None, maxFre-
qError=None, bindaddr=‘0.0.0.0’,
bindport=6677, followup=False)

A CSS-WC server.

Pass it a clock object and information on clock precision and frequency stability, and tell it which network
interface to listen on.

Call start() and stop() to start and stop the server. It runs in its own separate thread in the background.

You can optionally ask this server to operate in a mode where it will send follow-up responses. Note, however,
that in this implementation the transmit-timevalue reported in the follow-up response is not guaranteed to be
more accurate. This option exists primarily to check whether a Wall Clock Client has implemennted handling
of follow-up responses at all.

Parameters

• wallClock – (:class:dvbcss.clock.ClockBase) The clock to be used as the wall clock for
protocol interactions

• precisionSecs – (float) Optional. Override using the precision of the provided clock
and instead use this value. It is the precision (in seconds) to be reported for the clock in
protocol interactions

• maxFreqErrorPpm – (float) Optional. Override using the rootMaxFreqError() of
the clock and instead use this value. It is the clock maximum frequency error in parts-per-
million

• bindaddr – (str, ip address) The ip address of the network interface to bind to, e.g.
“127.0.0.1”. Defaults to “0.0.0.0” which binds to all interfaces.

• bindport – (int) The port number to bind to (defaults to 6677)

• followup – (bool) Set to True if the Wall Clock Server should send follow-up responses.
Defaults to False.

run()
Internal method - the main runloop of the thread.

Runs in a loop calling the handle() method of the object assigned to the handler property whenever
a UDP packet is received.

Does not return until the _pleaseStop attribute of the object has been set to True

start()
Starts the wall clock server running. It runs in a thread in the background.

stop()
Stops the wall clock server running. Does not return until the thread has terminated.

This package provides objects for representing messages exchanged via the DVB CSS-WC protocol and for imple-
menting clients and servers.

The WC protocol is a simple UDP request response-protocol that enables simple clock synchronisation algorithms to
be used to establish a common wall clock between a server and client.

There is a WallClockServer class providing a self contained Wall Clock server. The WallClockClient is
designed to allow different algorithms to be plugged in for acting on the results of the request-response interaction to
adjust a local clock object to match the Wall Clock of the server.

2.3. CSS-WC protocol 69

http://en.wikipedia.org/wiki/Network_Time_Protocol#Clock_synchronization_algorithm


"pydvbcss - a library implementing DVB protocols for Companion Screen Synchronisation,
Release 0.5.1-release

Modules for using the CSS-WC protocol:

• dvbcss.protocol.wc : objects for representing and packing/unpacking the protocol messages.

• dvbcss.protocol.client.wc : implementation of a client for a CSS-WC connection.

• dvbcss.protocol.client.wc.algorithm : algorithms to be used with a CSS-WC client.

• dvbcss.protocol.server.wc : implementation of a server for a CSS-WC connection.

See Protocol server implementation details for information on how the servers are implemented.

2.4 Common types and objects

2.4.1 Signalling that a property is to be omitted from a message

dvbcss.protocol.OMIT object
When this object is assigned to an attribute of a protocol message object this indicates that the corresponding
property is not included in the JSON representation of that message (it is omitted).

Here is an example. By default nearly all properties of a freshly created CII message object are ‘OMIT’:

>>> from dvbcss.protocol.cii import CII
>>> from dvbcss.protocol import OMIT

>>> c=CII()
>>> print repr(c.contentId)
OMIT

>>> c.wcUrl = "udp://192.168.1.1:6677"
>>> print repr(c.wcUrl)
'udp://192.168.1.1:6677'

>>> c.wcUrl = OMIT
>>> print repr(c.wcUrl)
OMIT

2.4.2 Private data

Some protocol messages contain optional properties to carry private data.

Private data is encoded in message objects here as a list of dict objects where each has a key “type” whose value
is a URI.

Each dict can contain any other keys and values you wish so long as they can be parsed by the python json module’s
encoder. For example:

example_private_data = [
{ "type" : "urn:bbc.co.uk:pid", "pid":"b00291843",

"entity":"episode"
},
{ "type" : "tag:bbc.co.uk/programmes/clips/link-url",

"http://www.bbc.co.uk/programmes/b1290532/"
}

]
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2.4.3 Exceptions

class dvbcss.protocol.client.ConnectionError
Exception that is raised when it was not possible to open a connection to a server.
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CHAPTER 3

Clocks, Time and Scheduling modules

This library contains a range of tools for dealing with timing, clocks, and timelines and scheduling code to run at set
times.

Contents:

3.1 Montonic time functions

Module: dvbcss.monotonic_time

• Example use

• Operating system implementation details

– Windows

– Mac OS X

– Linux

• Functions

– time(), timeMicros() and timeNanos()

– sleep()

This module implements operating system specific access to high resolution monotonic system timers for the following
operating systems:

• Windows 2000 Pro or later

• Linux

• Mac OS X
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It implements a time() function and sleep() function that work the same as the time.time() and time.
sleep() functions in the python standard library.

It also adds a timeNanos() and timeMicros() variants that report time in units of nanoseconds or microseconds
instead of seconds.

See operating system specific implementation details below to understand the limitations of the functions provided in
this module.

Note: For all supported operating systems, the sleep() function is not guaranteed to use the same underlying timer as
the time() and therefore should be considered inaccurate.

3.1.1 Example use

>>> import dvbcss.monotonic_time as monotonic_time
>>> monotonic_time.time()
4695.582637038
>>> monotonic_time.timeNanos()
4700164952506L
>>> monotonic_time.timeMicros()
4703471405L
>>> monotonic_time.sleep(0.5) # sleep 1/2 second

3.1.2 Operating system implementation details

The precision and accuracy of the clocks and sleep functions are dependent on the host operating system and hardware.
This module can therefore provide no performance guarantees.

Windows

Windows NT 5.0 (Windows 2000 Professional) or later is supported, including the cygwin environment.

The time() function and its variants are based on the QueryPerformanceCounter() high resolution timer system call.
This clock is guaranteed to be monotonic and have 1 microsecond precision or better.

The sleep() function is based on the CreateWaitableTimer() and SetWaitableTimer() system calls.

Note that the sleep() function for Windows is not guaranteed to be accurate because it is not possible to create
blocking (non polling) delays based on the clock source used. However it should have significantly higher precision
than the standard 15ms windows timers and will be fine for short delays.

Mac OS X

The time() function and its variants are based on the mach_absolute_time() system call.

The clock is guaranteed to be monotonic. Apple provides no guarantees on precision, however in practice it is usually
based on hardware tick counters in the processor or support chips and so is extremely high precision (microseconds or
better).

The sleep() function is based on the nanosleep() system call. It is unclear whether this uses the same underlying
counter as mach_absolute_time().
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Linux

The time() function and its variants are based on the clock_gettime() system call requesting
CLOCK_MONOTONIC.

The sleep() function is based on the nanosleep() system call. It is unclear whether this uses the same underlying
counter as CLOCK_MONOTONIC.

3.1.3 Functions

time(), timeMicros() and timeNanos()

dvbcss.monotonic_time.time()
Return monotonic time in seconds and fractions of seconds (as a float). The precision is operating system
dependent.

dvbcss.monotonic_time.timeMicros()
Return monotonic time in integer microseconds. The precision is operating system dependent.

dvbcss.monotonic_time.timeNanos()
Return monotonic time in integer nanoseconds. The precision is operating system dependent.

sleep()

dvbcss.monotonic_time.sleep(t)
Sleep for specified number of second and fractions of seconds (as a float). The precision is operating system
dependent.

Throws TimeoutError if the underlying system call used to sleep reported a timeout (OS dependent
behaviour)

Throws InterruptedException if a signal or other interruption is received while sleeping (OS de-
pendent behaviour)

Note: For all supported operating systems, the sleep() function is not guaranteed to use the same underlying
timer as the time() and therefore should be considered inaccurate.

3.2 Synthesised clocks (dvbcss.clock)

Module: dvbcss.clock

• Introduction

• Limitations on tick resolution (precision)

• Timers and Sleep functions

• Accounting for error (dispersion)

• Usage examples

– Simple hierarchies of clocks
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– Clock speed adjustment

– Translating tick values between clocks

– Implementing new clocks

• Not a number (nan)

• Functions

– measurePrecision - estimate measurement precision of a clock

• Classes

– ClockBase - base class for clocks

– SysClock - Clock based on time module

– CorrelatedClock - Clock correlated to another clock

– OffsetClock - A clock that is offset by a fixed amount of root time

– TunableClock - Clock with dynamically adjustable frequency and tick offset

– RangeCorrelatedClock - Clock correlated to another clock

– Correlation - represents a Correlation

The dvbcss.clock module provides software synthesised clock objects that can be chained together into dependent
hierarchies. Use in conjunction with dvbcss.task to sleep and run code at set times on these clocks.

3.2.1 Introduction

The classes in this module implement software synthesised clocks from which you can query a current time value. A
clock counts in whole numbers of ticks (unlike the standard library time.time() function which counts in seconds
and fractions of a second) and has a tick rate (expresed in ticks per second).

To use clocks as timers or to schedule code to run later, you must use them with the functions of the dvbcss.task
module.

To use clocks begin with a root clock that is based on a underlying timing source. The following root clocks are
provided:

• SysClock is an root clock based on the dvbcss.monotonic_time.time() function as the underly-
ing time source

Other dependent clocks can then be created that have the underlying clock as their parent. and further dependent
clocks can be created with those dependents as their parents, creating chains of clocks, each based on their parent and
leading back to an underlying clock. The following dependent clocks are provided:

• CorrelatedClock is a fixed tick rate clock where you define the point of correlation between it and its
parent.

• OffsetClock ** is a clock that is the same as its parent but with an offset amount of root time. Useful to
calibrate for rendering pipeline delays.

• TunableClock is a clock that can have its tick count tweaked and its frequency slewed on the fly.

• RangleCorrelatedClock is a clock where the relationship to the parent is determined from two points
of correlation.

Dependent clocks can have a different tick rate to their parent and count their ticks from a different starting point.
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Dependent clocks allow their relationship to its parent clock to be changed dynamically - e.g. the absolute value, or
the rate at which the clock ticks. If your code needs to be notified of such a change, it can bind itself as a dependent to
that clock.

The base ClockBase class defines the set of methods common to all clocks (both underlying and dependent)

3.2.2 Limitations on tick resolution (precision)

The Clock objects here do not run a thread that counts individual ticks. Instead, to determine the current tick value
they query the parent clock for its current tick value and then calculate what the tick value should be.

A clock is therefore limited in the precision and resolution of its tick value by its parents. SysClock, for
example, is limited by the resolution of the underlying time source provided to it by dvbcss.monotonic_time
module’s dvbcss.monotonic_time.time() function. And this will be operating system dependent. SysClock
also outputs ticks as integer values.

If a parent of a clock only reports whole number (integer) tick values then that also limits the resolution of any clocks
that depend on it. For example, a clock that counts in integer ticks only at 25 ticks per second will cause a clock
descended from it, with a tick rate of 100 ticks per second, to report tick values that increment 4 ticks at a time ... or
worse if a parent of both has an even lower tick rate.

With the clocks provided by this module, only SysClock limits itself to integer numbers of ticks.
CorrelatedClock and TunableClock are capable of fractional numbers of ticks provided that the parame-
ters provided to them (e.g. the tickRate) are passed as floating point values (this will force python to do the maths in
floating point instead of integer maths).

3.2.3 Timers and Sleep functions

Use the functions of the dvbcss.task in conjunction with Clock objects to create code that sleeps, or which triggers
callbacks, based on time as measured by these clocks.

3.2.4 Accounting for error (dispersion)

These clocks also support tracking and calculating error bounds on the values they report. This is known as dispersion.
It is useful if, for example, a clock hierarchy is being used to estimate time based on imperfect measurements - such
as when a companion tries to estimate the Wall Clock of a TV.

Each clock in a hierarchy makes its own contribution to the overall dispersion. When a clock is asked to calculate
dispersion (using the dispersionAtTime() method), the answer it gives is the sum of the error contributions
from itself and its parents, all the way back up to the root system clock.

A system clock has error bounds determined by the precision with which it can be measured (the smallest amount by
which its values change).

When using a dependent clock, such as a CorrelatedClock, the correlation being used to set its relationship to its
parent might also have some uncertainty in it. This information can be included in the Correlation. Uncertainty
based on measurements/estimates can grow over time - e.g. because the clocks in a TV and companion gradually drift.
So there are two parameters that you can provide in a Correlation - the initial error and the growth rate. As time
passes, the error for the clock using this correlation is calculated as the initial error plus the growth rate multiplied by
how much time has passed since the point of correlation.
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3.2.5 Usage examples

Simple hierarchies of clocks

Here is a simple example where a clock represents a timeline and another represents a timeline related to the first by a
correlation:

from dvbcss.clock import SysClock
from dvbcss.clock import CorrelatedClock
from dvbcss.clock import Correlation

# create a clock based on dvbcss.monotonic_time.time() that ticks in milliseconds
sysClock = SysClock(tickRate=1000)

# create a clock to represent a timeline
corr = Correlation(parentTicks=0, childTicks=0)
baseTimeline = CorrelatedClock(parentClock=sysClock, tickRate=25, correlation=corr)

# create a clock representing another timeline, where time zero corresponds to time
→˓100
# on the parent timeline
corr2 = Correlation(parentTicks=100, childTicks=0)
subTimeline = CorrelatedClock(parentClock=baseTimeline, tickRate=25,
→˓correlation=corr2)

At some point later in time during the program, we query the values of all the clocks, confirming that the sub timeline
is always 100 ticks ahead of the base timeline.

def printTimes():
sys = sysClock.ticks()
base = baseTimeline.ticks()
sub = subTimeline.ticks()
print "SysClock ticks = %d", sys
print "Base timeline ticks = %d", base
print "Sub timeline ticks = %d", sub

>>> printTimes()
SysClock ticks = 20000
Base timeline ticks = 500
Sub timeline ticks = 600

Note that in these examples, for clarity, the tick count on the sysClock is artificially low. It would likely be a much
larger value.

We then change the correlation for the base timeline, declaring tick 25 on its baseline to correspond to tick 0 on its
parent timeline, and both the base timeline and the sub timeline reflect this:

>>> baseTimeline.correlation = Correlation(0,25)
>>> printTimes()
SysClock ticks = 30000
Base timeline ticks = 775
Sub timeline ticks = 875

Clock speed adjustment

All clocks have a speed property. Normally this is 1.0. Some clock classes support changing this value. This scales
the rate at which the clock ticks relative to its parent. For example, 0.5 corresponds to half speed; 2.0 = double speed,
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0 = frozen and -1.0 = reverse.

Clocks will take speed into account when returning their current tick position or converting it to or from the tick
value of a parent clock. However it does not alter the tickRate property. A child clock will similarly ignore the speed
property of a parent clock. In this way, the speed property can be used to tweak the speed of time, or to emulate speed
control (fast forward, rewind, pause) for a media timeline.

Here is an example where we create 3 clocks in a chain and all tick initially at 100 ticks per second:

>>> import time
>>> baseClock = Sysclock(tickRate=100)
>>> clock1 = TunableClock(parent=baseClock, tickRate=100)
>>> clock2 = TunableClock(parent=clock1, tickRate=100)

We confirm that both clock1 and its child - clock2 - tick at 100 ticks per second:

>>> print clock1.ticks; time.sleep(1.0); print clock1.ticks
5023
5123
>>> print clock2.ticks; time.sleep(1.0); print clock2.ticks
2150
2250

If we change the tick rate of clock1 this affects clock1, but its child - clock2 - continues to tick at 100 ticks every
second:

>>> clock1.tickRate = 200
>>> print clock1.ticks; time.sleep(1.0); print clock1.ticks
5440
5640
>>> print clock2.ticks; time.sleep(1.0); print clock2.ticks
4103
4203

But if we instead change the speed multiplier of clock1 then this not only affects the ticking rate of clock1 but also of
its child - clock2:

>>> clock1.tickRate = 100
>>> clock1.speed = 2.0
>>> print clock1.ticks; time.sleep(1.0); print clock1.ticks
5740
5940
>>> print clock2.ticks; time.sleep(1.0); print clock2.ticks
4603
4803

Translating tick values between clocks

The clock classes provide mechanisms to translate a tick value from one clock to a tick value of another clock such
that it still represents the same moment in time. So long as both clocks share a common ancestor clock, the conversion
will be possible.

toParentTicks() and fromParentTicks() converts tick values for a clock to/from its parent clock.
toOtherClockTicks() will convert a tick value for this clock to the corresponding tick value for any other
clock with a common ancestor to this one.
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from dvbcss.clock import SysClock
from dvbcss.clock import CorrelatedClock
from dvbcss.clock import Correlation

# create a clock based on dvbcss.monotonic_time.time() that ticks in milliseconds
sysClock = SysClock(tickRate=1000)

# +------------+
# .-- | mediaClock |
# +----------+ +-----------+ <--' +------------+
# | sysClock | <-- | wallClock |
# +----------+ +-----------+ <--. +-----------------+
# '-- | otherMediaClock |
# +-----------------+

wallClock = CorrelatedClock(parentClock=sysClock, tickRate=1000000000,
→˓correlation=Correlation(0,0))
mediaClock = CorrelatedClock(parentClock=wallClock, tickRate=25,
→˓correlation=Correlation(500021256, 0))
otherMediaClock = CorrelatedClock(parentClock=wallClock, tickRate=30,
→˓correlation=Correlation(21093757, 0))

# calculate wall clock time 'w' corresponding to a mediaClock time 1582:
t = 1582
w = mediaClock.toParentTicks(t)
print "When MediaClock ticks =", t, " wall clock ticks =", w

# calculate mediaClock time 'm' corresponding to wall clock time 1920395
w = 1920395
m = mediaClock.fromParentTicks(w)
print "When wall clock ticks =", w, " media clock ticks =", m

# calculate other media clock time corresponding to media clock time 2248
t = 2248
o = mediaClock.toOtherClockTicks(otherMediaClock, t)
print "When MediaClock ticks =", t, " other media clock ticks =", o

Let us now suppose that the wall clock is actually an estimate of a Wall Clock on another device. When we set the
correlation we therefore include error information that is calculated from the proces by which the Wall Clock of the
other device is estimated:

wallClock.correlation = Correlation(24524535, 34342, initialError=0.012,
→˓errorGrowthRate=0.00005)

Here we are saying that the error bounds of the estimate at the point in time represented by the correlation is +/- 0.012
seconds. This will grow by 0.00005 seconds for every tick of the parent clock.

print "Dispersion is +/-", wallClock.dispersionAtTime(wallClock.ticks), "seconds"

print "In 1000 ticks from now, dispersion will be +/-", wallClock.
→˓dispersionAtTime(wallClock.ticks + 1000), "seconds"

Implementing new clocks

Implement a new clock class by subclassing ClockBase and implementing the stub methods.
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For example, here is a clock that is the same as its parent (same tick rate) except that its current tick value differs by a
fixed offset.

from dvbcss.clock import ClockBase

class FixedTicksOffsetClock(ClockBase):

def __init__(self, parent, offset):
super(FixedTicksOffsetClock,self).__init__()
self._parent = parent
self._offset = offset

def calcWhen(self, ticksWhen):
return self._parent.calcWhen(ticksWhen - self._offset)

def fromParentTicks(self, ticks):
return ticks + self._offset

def getParent(self):
return self._parent

@property
def tickRate(self):

return self._parent.tickRate

@property
def ticks(self)

return self._parent.ticks + self._offset

def toParentTicks(self, ticks):
return ticks - self._offset

def _errorAtTime(self,t):
return 0

In use:

>>> f = FixedTicksOffsetClock(parentClock, 100)
>>> print parentClock.ticks, f.ticks
216 316

When doing this, you must decide whether to allow the speed to be adjusted. If you do, then it must be taken into
account in the calculations for the methods: calcWhen(), fromParentTicks() and toParentTicks().

3.2.6 Not a number (nan)

“Not a number” value of a float. Check if a value is NaN like this:

>>> import math
>>> math.isnan(nanValue)
True

Converting tick values to a parent clock or to the root clock may result in this value being returned if one or more of
the clocks involved has speed zero.
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3.2.7 Functions

measurePrecision - estimate measurement precision of a clock

dvbcss.clock.measurePrecision(clock, sampleSize=10000)
Do a very rough experiment to work out the precision of the provided clock.

Works by empirically looking for the smallest observable difference in the tick count.

Parameters sampleSize – (int) Number of iterations (sample size) to estimate the precision over

Returns (float) estimate of clock measurement precision (in seconds)

3.2.8 Classes

ClockBase - base class for clocks

class dvbcss.clock.ClockBase(**kwargs)
Base class for all clock classes.

By default, adjusting tickRate and speed are not permitted unless a subclass overrides and implements a property
setter.

bind(dependent)
Bind for notification if this clock changes.

Parameters dependent – When this clock changes, the notify()method of this dependent
will be called, passing a single argument that is this clock.

calcWhen(ticksWhen)

Return “when” in terms of the underlying clock behind the root clock implementation (e.g.
monotonic_time.time() in the case of SysClock). Will return Not a number (nan)
if the conversion is not possible (e.g. when current speed is zero and ticksWhen does not
match the current correlation.childTicks).

This is a stub for this method. Sub-classes should implement it.

clockDiff(otherClock)
Calculate the potential for difference between this clock and another clock.

Parameters otherClock – The clock to compare with.

Returns The potential difference in units of seconds. If effective speeds or tick rates differ, this
will always be float (“+inf”).

If the clocks differ in effective speed or tick rate, even slightly, then this means that the clocks will eventu-
ally diverge to infinity, and so the returned difference will equal +infinity.

New in version 0.4.

dispersionAtTime(t)
Calculates the dispersion (maximum error bounds) at the specified clock time. This takes into account the
contribution to error of this clock and its ancestors.

Returns Dispersion (in seconds) at the specified clock time.

New in version 0.4.

fromParentTicks(ticks)
This is a stub for this method. Sub-classes should implement it.
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Method to convert from a tick value for this clock’s parent to the equivalent tick value (representing the
same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the
conversion.

Returns The specified tick value for the parent clock converted to the timescale of this clock.

Throws StopIteration if this clock has no parent

fromRootTicks(t)
Return the time for this clock corresponding to a given time of the root clock.

Parameters t – Tick value of the root clock.

Returns Corresponding tick value of this clock.

New in version 0.4.

getAncestry()
Retrieve the ancestry of this clock as a list.

Returns A list of clocks, starting with this clock, and proceeding to its parent, then its parent’s
parent etc, ending at the root clock.

New in version 0.4.

getEffectiveSpeed()
Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root
clock.

getParent()
This is a stub for this method. Sub-classes should implement it.

Returns ClockBase representing the immediate parent of this clock, or None if it is a root
clock.

getRoot()

Returns The root clock for this clock (or itself it has no parent).

New in version 0.4.

getRootMaxFreqError()
Return potential error of underlying clock (e.g. system clock).

Returns The maximum potential frequency error (in parts-per-million) of the underlying root
clock.

This is a partial stub method. It must be re-implemented by root clocks.

For a clock that is not the root clock, this method will pass through the call to the same method of the root
clock.

New in version 0.4.

isAvailable()
Returns whether this clock is available, taking into account the availability of any (parent) clocks on which
it depends.

Returns True if available, otherwise False.

New in version 0.4.
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nanos
(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick
rate (but ignoring the speed property).

nanosToTicks(nanos)
Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring
the speed property).

Parameters nanos – nanoseconds value

Returns number of ticks equivalent to the supplied nanosecond value

notify(cause)
Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying
timing source.

Parameters cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

setAvailability(availability)
Set the availability of this clock.

Parameters availability – True if this clock is available, otherwise False.

If setting the availability of this clock changes the overall availability of this clock (as returned by
isAvailable()) then dependents will be notified of the change.

New in version 0.4.

setParent(newParent)
This is a stub for this method. Sub-classes should implement it.

Change the parent of this clock (if supported). Will generate a notification of change.

speed
(read/write float) The speed at which the clock is running. Does not change the reported tickRate value,
but will affect how ticks are calculated from parent clock ticks. Default = 1.0 = normal tick rate.

tickRate
(read only)The tick rate (in ticks per second) of this clock.

This is a stub for this method. Sub-classes should implement it.

ticks
(read only) The tick count for this clock.

This is a stub for this method. Sub-classes should implement it.

toOtherClockTicks(otherClock, ticks)
Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters

• otherClock – A clock object representing another clock.

• ticks – A time (tick value) for this clock

Returns The tick value of the otherClock that represents the same moment in time, or Not a
number (nan)

Throws NoCommonClock if there is no common ancestor clock (meaning it is not possible to
convert
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toParentTicks(ticks)
This is a stub for this method. Sub-classes should implement it.

Method to convert from a tick value for this clock to the equivalent tick value (representing the same point
in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the
conversion.

Returns The specified tick value of this clock converted to the timescale of the parent clock.

Throws StopIteration if this clock has no parent

toRootTicks(t)
Return the time for the root clock corresponding to a given time of this clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters t – Tick value for this clock.

Returns Corresponding tick value of the root clock, or Not a number (nan)

New in version 0.4.

unbind(dependent)
Unbind from notification if this clock changes.

Parameters dependent – The dependent to unbind from receiving notifications.

SysClock - Clock based on time module

class dvbcss.clock.SysClock(tickRate=1000000, maxFreqErrorPpm=500, **kwargs)
A clock based directly on the standard library timer function monotonic_time.time(). Returns integer
ticks when its ticks property is queried.

The default tick rate is 1 million ticks per second, but a different tick rate can be chosen during initialisation.

Parameters

• tickRate – Optional (default=1000000). The tick rate of this clock (ticks per second).

• maxFreqErrorPpm – Optional (default=500). The maximum frequency error (in units of
parts-per-million) of the clock, or an educated best-estimate of it.

The precision is automatically estimated using the measurePrecision() function when this clock is cre-
ated. So creating a SysClock, particularly one with a low tickrate, may incur a noticeable delay at initialisation.

The measured precision is then reported as the dispersion of this clock.

It is not permitted to change the tickRate or speed property of this clock because it directly represents a
system clock.

Parameters tickRate – (int) tick rate for this clock (in ticks per second)

bind(dependent)
Bind for notification if this clock changes.

Parameters dependent – When this clock changes, the notify()method of this dependent
will be called, passing a single argument that is this clock.

calcWhen(ticksWhen)
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Return “when” in terms of the underlying clock behind the root clock implementation (e.g.
monotonic_time.time() in the case of SysClock). Will return Not a number (nan)
if the conversion is not possible (e.g. when current speed is zero and ticksWhen does not
match the current correlation.childTicks).

(Documentation inherited from ClockBase)

clockDiff(otherClock)
Calculate the potential for difference between this clock and another clock.

Parameters otherClock – The clock to compare with.

Returns The potential difference in units of seconds. If effective speeds or tick rates differ, this
will always be float (“+inf”).

If the clocks differ in effective speed or tick rate, even slightly, then this means that the clocks will eventu-
ally diverge to infinity, and so the returned difference will equal +infinity.

New in version 0.4.

dispersionAtTime(t)
Calculates the dispersion (maximum error bounds) at the specified clock time. This takes into account the
contribution to error of this clock and its ancestors.

Returns Dispersion (in seconds) at the specified clock time.

New in version 0.4.

fromParentTicks(ticks)

Method to convert from a tick value for this clock’s parent to the equivalent tick value (represent-
ing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value for the parent clock converted to the timescale of this
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

fromRootTicks(t)
Return the time for this clock corresponding to a given time of the root clock.

Parameters t – Tick value of the root clock.

Returns Corresponding tick value of this clock.

New in version 0.4.

getAncestry()
Retrieve the ancestry of this clock as a list.

Returns A list of clocks, starting with this clock, and proceeding to its parent, then its parent’s
parent etc, ending at the root clock.

New in version 0.4.

getEffectiveSpeed()
Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root
clock.

86 Chapter 3. Clocks, Time and Scheduling modules

https://docs.python.org/2/library/functions.html#float


"pydvbcss - a library implementing DVB protocols for Companion Screen Synchronisation,
Release 0.5.1-release

getParent()

returns ClockBase representing the immediate parent of this clock, or None if it is a
root clock.

(Documentation inherited from ClockBase)

getRoot()

Returns The root clock for this clock (or itself it has no parent).

New in version 0.4.

getRootMaxFreqError()
Return potential error of underlying clock (e.g. system clock).

returns The maximum potential frequency error (in parts-per-million) of the underlying
root clock.

This is a partial stub method. It must be re-implemented by root clocks.

For a clock that is not the root clock, this method will pass through the call to the same method
of the root clock.

New in version 0.4.

(Documentation inherited from ClockBase)

isAvailable()
Returns whether this clock is available, taking into account the availability of any (parent) clocks on which
it depends.

Returns True if available, otherwise False.

New in version 0.4.

nanos
(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick
rate (but ignoring the speed property).

nanosToTicks(nanos)
Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring
the speed property).

Parameters nanos – nanoseconds value

Returns number of ticks equivalent to the supplied nanosecond value

notify(cause)
Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying
timing source.

Parameters cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

setAvailability(availability)
SysClock is always available, and so availability cannot be set.

Raises NotImplementedError – Always raised.

New in version 0.4.

setParent(newParent)
This is a stub for this method. Sub-classes should implement it.

Change the parent of this clock (if supported). Will generate a notification of change.
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speed
(read/write float) The speed at which the clock is running. Does not change the reported tickRate value,
but will affect how ticks are calculated from parent clock ticks. Default = 1.0 = normal tick rate.

tickRate
(read only)The tick rate (in ticks per second) of this clock.

(Documentation inherited from ClockBase)

ticks
(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

toOtherClockTicks(otherClock, ticks)
Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters

• otherClock – A clock object representing another clock.

• ticks – A time (tick value) for this clock

Returns The tick value of the otherClock that represents the same moment in time, or Not a
number (nan)

Throws NoCommonClock if there is no common ancestor clock (meaning it is not possible to
convert

toParentTicks(ticks)

Method to convert from a tick value for this clock to the equivalent tick value (representing the
same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value of this clock converted to the timescale of the parent
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

toRootTicks(t)
Return the time for the root clock corresponding to a given time of this clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters t – Tick value for this clock.

Returns Corresponding tick value of the root clock, or Not a number (nan)

New in version 0.4.

unbind(dependent)
Unbind from notification if this clock changes.

Parameters dependent – The dependent to unbind from receiving notifications.
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CorrelatedClock - Clock correlated to another clock

class dvbcss.clock.CorrelatedClock(parentClock, tickRate, correla-
tion=Correlation(parentTicks=0, childticks=0, initialEr-
ror=0, errorGrowthRate=0), speed=1.0, **kwargs)

A clock locked to the tick count of the parent clock by a correlation and frequency setting.

Correlation is either a Correlation object or a simple tuple (parentTicks, selfTicks). The object form also
allows you to specify error bounds information that this clock will track and propagate to other clocks.

When the parent clock ticks property has the value parentTicks, the ticks property of this clock shall have the
value selfTicks.

This relationship can be illustrated as follows:

You can alter the correlation and tickRate and speed of this clock dynamically. Changes to tickRate and speed
will not shift the point of correlation. This means that a change in tickRate or speed will probably cause the
current tick value of the clock to jump. The amount it jumps by will be proportional to the distance the current
time is from the point of correlation:
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If you want a speed change to only affect the ticks from a particular point (e.g. the current tick value) onwards
then you must re-base the correlation. There is a function provided to do that in some circumstances:

c = CorrelatedClock(parentClock=parent, tickRate=1000, correlation=(50,78))

... time passes ...

# now freeze the clock AT ITS CURRENT TICK VALUE

c.rebaseCorrelationAtTicks(c.ticks)
c.speed = 0

# now resume the clock but at half speed, but again without the tick value jumping
c.correlation = Correlation( parent.ticks, c.ticks )
c.speed = 0.5

Note: The maths to calculate and convert tick values will be performed, by default, as integer maths unless
the parameters controlling the clock (tickRate etc) are floating point, or the ticks property of the parent clock
supplies floating point values.

Parameters

• parentClock – The parent clock for this clock.

• tickRate – (int) tick rate for this clock (in ticks per second)

• correlation – (Correlation) or tuple (parentTicks, selfTicks). The intial correlation
for this clock.

• speed – Initial speed for this clock.
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bind(dependent)
Bind for notification if this clock changes.

Parameters dependent – When this clock changes, the notify()method of this dependent
will be called, passing a single argument that is this clock.

calcWhen(ticksWhen)

Return “when” in terms of the underlying clock behind the root clock implementation (e.g.
monotonic_time.time() in the case of SysClock). Will return Not a number (nan)
if the conversion is not possible (e.g. when current speed is zero and ticksWhen does not
match the current correlation.childTicks).

(Documentation inherited from ClockBase)

clockDiff(otherClock)
Calculate the potential for difference between this clock and another clock.

Parameters otherClock – The clock to compare with.

Returns The potential difference in units of seconds. If effective speeds or tick rates differ, this
will always be float (“+inf”).

If the clocks differ in effective speed or tick rate, even slightly, then this means that the clocks will eventu-
ally diverge to infinity, and so the returned difference will equal +infinity.

New in version 0.4.

correlation
Read or change the correlation of this clock to its parent clock.

Assign a new Correlation object to change the correlation.

You can also pass a tuple (parentTicks, selfTicks) which will be converted to a correlation automatically.
Reading this property after setting it with a tuple will return the equivalent Correlation.

dispersionAtTime(t)
Calculates the dispersion (maximum error bounds) at the specified clock time. This takes into account the
contribution to error of this clock and its ancestors.

Returns Dispersion (in seconds) at the specified clock time.

New in version 0.4.

fromParentTicks(ticks)

Method to convert from a tick value for this clock’s parent to the equivalent tick value (represent-
ing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value for the parent clock converted to the timescale of this
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

fromRootTicks(t)
Return the time for this clock corresponding to a given time of the root clock.

Parameters t – Tick value of the root clock.

Returns Corresponding tick value of this clock.
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New in version 0.4.

getAncestry()
Retrieve the ancestry of this clock as a list.

Returns A list of clocks, starting with this clock, and proceeding to its parent, then its parent’s
parent etc, ending at the root clock.

New in version 0.4.

getEffectiveSpeed()
Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root
clock.

getParent()

returns ClockBase representing the immediate parent of this clock, or None if it is a
root clock.

(Documentation inherited from ClockBase)

getRoot()

Returns The root clock for this clock (or itself it has no parent).

New in version 0.4.

getRootMaxFreqError()
Return potential error of underlying clock (e.g. system clock).

Returns The maximum potential frequency error (in parts-per-million) of the underlying root
clock.

This is a partial stub method. It must be re-implemented by root clocks.

For a clock that is not the root clock, this method will pass through the call to the same method of the root
clock.

New in version 0.4.

isAvailable()
Returns whether this clock is available, taking into account the availability of any (parent) clocks on which
it depends.

Returns True if available, otherwise False.

New in version 0.4.

isChangeSignificant(newCorrelation, newSpeed, thresholdSecs)
Returns True if the potential for difference in tick values of this clock (using a new correlation and speed)
exceeds a specified threshold.

Parameters

• newCorrelation – A Correlation

• newSpeed – New speed as a float.

Returns True if the potential difference can/will eventually exceed the threshold.

This is implemented by applying a threshold to the output of quantifyChange().

New in version 0.4.
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nanos
(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick
rate (but ignoring the speed property).

nanosToTicks(nanos)
Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring
the speed property).

Parameters nanos – nanoseconds value

Returns number of ticks equivalent to the supplied nanosecond value

notify(cause)
Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying
timing source.

Parameters cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

quantifyChange(newCorrelation, newSpeed)
Calculate the potential for difference in tick values of this clock if a different correlation and speed were
to be used.

Parameters

• newCorrelation – A Correlation

• newSpeed – New speed as a float.

Returns The potential difference in units of seconds. If speeds differ, this will always be float
(“+inf”).

If the new speed is different, even slightly, then this means that the ticks reported by this clock will
eventually differ by infinity, and so the returned value will equal +infinity. If the speed is unchanged then
the returned value reflects the difference between old and new correlations.

New in version 0.4.

rebaseCorrelationAtTicks(tickValue)
Changes the correlation property to an equivalent correlation (that does not change the timing re-
lationship between parent clock and this clock) where the tick value for this clock is the provided tick
value.

setAvailability(availability)
Set the availability of this clock.

Parameters availability – True if this clock is available, otherwise False.

If setting the availability of this clock changes the overall availability of this clock (as returned by
isAvailable()) then dependents will be notified of the change.

New in version 0.4.

setCorrelationAndSpeed(newCorrelation, newSpeed)
Set both the correlation and the speed to new values in a single operation. Generates a single notification
for descendents as a result.

Parameters

• newCorrelation – A Correlation representing the new correlation. Or a tuple
(parentTicks, selfTicks) representing the correlation.

• newSpeed – New speed as a float.
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New in version 0.4.

setParent(newParent)

Change the parent of this clock (if supported). Will generate a notification of change.

(Documentation inherited from ClockBase)

speed

(read/write float) The speed at which the clock is running. Does not change the reported tickRate
value, but will affect how ticks are calculated from parent clock ticks. Default = 1.0 = normal tick
rate.

(Documentation inherited from ClockBase)

tickRate
Read or change the tick rate (in ticks per second) of this clock. The value read is not affected by the value
of the speed property.

ticks
(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

toOtherClockTicks(otherClock, ticks)
Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters

• otherClock – A clock object representing another clock.

• ticks – A time (tick value) for this clock

Returns The tick value of the otherClock that represents the same moment in time, or Not a
number (nan)

Throws NoCommonClock if there is no common ancestor clock (meaning it is not possible to
convert

toParentTicks(ticks)

Method to convert from a tick value for this clock to the equivalent tick value (representing the
same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value of this clock converted to the timescale of the parent
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

toRootTicks(t)
Return the time for the root clock corresponding to a given time of this clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters t – Tick value for this clock.

Returns Corresponding tick value of the root clock, or Not a number (nan)
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New in version 0.4.

unbind(dependent)
Unbind from notification if this clock changes.

Parameters dependent – The dependent to unbind from receiving notifications.

OffsetClock - A clock that is offset by a fixed amount of root time

class dvbcss.clock.OffsetClock(parentClock, offset=0)
A clock that applies an offset such that reading it is the same as reading its parent, but as if the current time is
slightly offset by an amount ahead (+ve offset) or behind (-ve offset).

OffsetClock inherits the tick rate of its parent. Its speed is always 1. It takes the effective speed into account
when applying the offset, so it should always represent the same amount of time according to the root clock. In
practice this means it will be a constant offset amount of real-world time.

This can be used to compensate for rendering delays. If it takes N seconds to render some content and display
it, then a positive offset of N seconds will mean that the rendering code thinks time is N seconds ahead of where
it is. It will then render the correct content that is needed to be displayed in N seconds time.

For example: A correlated clock (the “media clock”) represents the time position a video player needs to cur-
rently be at.

The video player has a 40 milisecond (0.040 second) delay between when it renders a frame and the light being
emitted by the display. We therefore need the video player to render 40 milliseconds in advance of when the
frame is to be displayed. An OffsetClock is used to offset time in this way and is passed to the video player:

mediaClock = CorrelatedClock(...)

PLAYER_DELAY_SECS = 0.040
oClock = OffsetClock(parent=mediaClock, offset=PLAYER_DELAY_SECS)

videoPlayer.syncToClock(oClock)

If needed, the offset can be altered at runtime, by setting the offset property. For example, perhaps it needs
to be changed to a 50 millisecond offset:

oClock.offset = 0.050

Both positive and negative offsets can be used.

bind(dependent)
Bind for notification if this clock changes.

Parameters dependent – When this clock changes, the notify()method of this dependent
will be called, passing a single argument that is this clock.

calcWhen(ticksWhen)

Return “when” in terms of the underlying clock behind the root clock implementation (e.g.
monotonic_time.time() in the case of SysClock). Will return Not a number (nan)
if the conversion is not possible (e.g. when current speed is zero and ticksWhen does not
match the current correlation.childTicks).

This is a stub for this method. Sub-classes should implement it.

clockDiff(otherClock)
Calculate the potential for difference between this clock and another clock.

Parameters otherClock – The clock to compare with.
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Returns The potential difference in units of seconds. If effective speeds or tick rates differ, this
will always be float (“+inf”).

If the clocks differ in effective speed or tick rate, even slightly, then this means that the clocks will eventu-
ally diverge to infinity, and so the returned difference will equal +infinity.

New in version 0.4.

dispersionAtTime(t)
Calculates the dispersion (maximum error bounds) at the specified clock time. This takes into account the
contribution to error of this clock and its ancestors.

Returns Dispersion (in seconds) at the specified clock time.

New in version 0.4.

fromParentTicks(ticks)

Method to convert from a tick value for this clock’s parent to the equivalent tick value (represent-
ing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value for the parent clock converted to the timescale of this
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

fromRootTicks(t)
Return the time for this clock corresponding to a given time of the root clock.

Parameters t – Tick value of the root clock.

Returns Corresponding tick value of this clock.

New in version 0.4.

getAncestry()
Retrieve the ancestry of this clock as a list.

Returns A list of clocks, starting with this clock, and proceeding to its parent, then its parent’s
parent etc, ending at the root clock.

New in version 0.4.

getEffectiveSpeed()
Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root
clock.

getParent()

returns ClockBase representing the immediate parent of this clock, or None if it is a
root clock.

(Documentation inherited from ClockBase)

getRoot()

Returns The root clock for this clock (or itself it has no parent).

New in version 0.4.
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getRootMaxFreqError()
Return potential error of underlying clock (e.g. system clock).

Returns The maximum potential frequency error (in parts-per-million) of the underlying root
clock.

This is a partial stub method. It must be re-implemented by root clocks.

For a clock that is not the root clock, this method will pass through the call to the same method of the root
clock.

New in version 0.4.

isAvailable()
Returns whether this clock is available, taking into account the availability of any (parent) clocks on which
it depends.

Returns True if available, otherwise False.

New in version 0.4.

nanos
(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick
rate (but ignoring the speed property).

nanosToTicks(nanos)
Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring
the speed property).

Parameters nanos – nanoseconds value

Returns number of ticks equivalent to the supplied nanosecond value

notify(cause)
Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying
timing source.

Parameters cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

offset
Read or change the number of seconds by which this clock is ahead (the offset).

setAvailability(availability)
Set the availability of this clock.

Parameters availability – True if this clock is available, otherwise False.

If setting the availability of this clock changes the overall availability of this clock (as returned by
isAvailable()) then dependents will be notified of the change.

New in version 0.4.

setParent(newParent)

Change the parent of this clock (if supported). Will generate a notification of change.

(Documentation inherited from ClockBase)

speed
Read the clock’s speed. It is always 1.

tickRate
Read the tick rate (in ticks per second) of this clock. The tick rate is always that of the parent clock.
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ticks
(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

toOtherClockTicks(otherClock, ticks)
Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters

• otherClock – A clock object representing another clock.

• ticks – A time (tick value) for this clock

Returns The tick value of the otherClock that represents the same moment in time, or Not a
number (nan)

Throws NoCommonClock if there is no common ancestor clock (meaning it is not possible to
convert

toParentTicks(ticks)

Method to convert from a tick value for this clock to the equivalent tick value (representing the
same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value of this clock converted to the timescale of the parent
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

toRootTicks(t)
Return the time for the root clock corresponding to a given time of this clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters t – Tick value for this clock.

Returns Corresponding tick value of the root clock, or Not a number (nan)

New in version 0.4.

unbind(dependent)
Unbind from notification if this clock changes.

Parameters dependent – The dependent to unbind from receiving notifications.

TunableClock - Clock with dynamically adjustable frequency and tick offset

class dvbcss.clock.TunableClock(parentClock, tickRate, ticks=0, **kwargs)
A clock whose tick offset and speed can be adjusted on the fly. Must be based on another clock.

Advancement of time of this clock is based on the tick count and rates reported by the supplied parent clock.

If you adjust the tickRate or speed, then the change is applied going forward from the moment it is made. E.g. if
you are observing the rate of increase of the ticks property, then doubling the speed wil cause the ticks property
to start increasing faster but will not cause it to suddenly jump value.
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Changed in version 0.4: TunableClock has been reimplemented as a subclass of CorrelatedClock. The
behaviour is the same as before, however it now also includes all the methods defined for CorrelatedClock
too.

The maths to calculate and convert tick values will be performed, by default, as integer maths unless the pa-
rameters controlling the clock (tickRate etc) are floating point, or the ticks property of the parent clock supplies
floating point values.

Parameters

• parentClock – The parent clock for this clock.

• tickRate – The tick rate (ticks per second) for this clock.

• ticks – The starting tick value for this clock.

The specified starting tick value applies from the moment this object is initialised.

adjustTicks(offset)
Change the tick count of this clock by the amount specified.

bind(dependent)
Bind for notification if this clock changes.

Parameters dependent – When this clock changes, the notify()method of this dependent
will be called, passing a single argument that is this clock.

calcWhen(ticksWhen)

Return “when” in terms of the underlying clock behind the root clock implementation (e.g.
monotonic_time.time() in the case of SysClock). Will return Not a number (nan)
if the conversion is not possible (e.g. when current speed is zero and ticksWhen does not
match the current correlation.childTicks).

(Documentation inherited from ClockBase)

clockDiff(otherClock)
Calculate the potential for difference between this clock and another clock.

Parameters otherClock – The clock to compare with.

Returns The potential difference in units of seconds. If effective speeds or tick rates differ, this
will always be float (“+inf”).

If the clocks differ in effective speed or tick rate, even slightly, then this means that the clocks will eventu-
ally diverge to infinity, and so the returned difference will equal +infinity.

New in version 0.4.

correlation
Read or change the correlation of this clock to its parent clock.

Assign a new Correlation object to change the correlation.

You can also pass a tuple (parentTicks, selfTicks) which will be converted to a correlation automatically.
Reading this property after setting it with a tuple will return the equivalent Correlation.

dispersionAtTime(t)
Calculates the dispersion (maximum error bounds) at the specified clock time. This takes into account the
contribution to error of this clock and its ancestors.

Returns Dispersion (in seconds) at the specified clock time.

New in version 0.4.

fromParentTicks(ticks)
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Method to convert from a tick value for this clock’s parent to the equivalent tick value (represent-
ing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value for the parent clock converted to the timescale of this
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

fromRootTicks(t)
Return the time for this clock corresponding to a given time of the root clock.

Parameters t – Tick value of the root clock.

Returns Corresponding tick value of this clock.

New in version 0.4.

getAncestry()
Retrieve the ancestry of this clock as a list.

Returns A list of clocks, starting with this clock, and proceeding to its parent, then its parent’s
parent etc, ending at the root clock.

New in version 0.4.

getEffectiveSpeed()
Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root
clock.

getParent()

returns ClockBase representing the immediate parent of this clock, or None if it is a
root clock.

(Documentation inherited from ClockBase)

(Documentation inherited from CorrelatedClock)

getRoot()

Returns The root clock for this clock (or itself it has no parent).

New in version 0.4.

getRootMaxFreqError()
Return potential error of underlying clock (e.g. system clock).

Returns The maximum potential frequency error (in parts-per-million) of the underlying root
clock.

This is a partial stub method. It must be re-implemented by root clocks.

For a clock that is not the root clock, this method will pass through the call to the same method of the root
clock.

New in version 0.4.

isAvailable()
Returns whether this clock is available, taking into account the availability of any (parent) clocks on which
it depends.
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Returns True if available, otherwise False.

New in version 0.4.

isChangeSignificant(newCorrelation, newSpeed, thresholdSecs)
Returns True if the potential for difference in tick values of this clock (using a new correlation and speed)
exceeds a specified threshold.

Parameters

• newCorrelation – A Correlation

• newSpeed – New speed as a float.

Returns True if the potential difference can/will eventually exceed the threshold.

This is implemented by applying a threshold to the output of quantifyChange().

New in version 0.4.

nanos
(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick
rate (but ignoring the speed property).

nanosToTicks(nanos)
Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring
the speed property).

Parameters nanos – nanoseconds value

Returns number of ticks equivalent to the supplied nanosecond value

notify(cause)
Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying
timing source.

Parameters cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

quantifyChange(newCorrelation, newSpeed)
Calculate the potential for difference in tick values of this clock if a different correlation and speed were
to be used.

Parameters

• newCorrelation – A Correlation

• newSpeed – New speed as a float.

Returns The potential difference in units of seconds. If speeds differ, this will always be float
(“+inf”).

If the new speed is different, even slightly, then this means that the ticks reported by this clock will
eventually differ by infinity, and so the returned value will equal +infinity. If the speed is unchanged then
the returned value reflects the difference between old and new correlations.

New in version 0.4.

rebaseCorrelationAtTicks(tickValue)
Changes the correlation property to an equivalent correlation (that does not change the timing re-
lationship between parent clock and this clock) where the tick value for this clock is the provided tick
value.

setAvailability(availability)
Set the availability of this clock.
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Parameters availability – True if this clock is available, otherwise False.

If setting the availability of this clock changes the overall availability of this clock (as returned by
isAvailable()) then dependents will be notified of the change.

New in version 0.4.

setCorrelationAndSpeed(newCorrelation, newSpeed)
Set both the correlation and the speed to new values in a single operation. Generates a single notification
for descendents as a result.

Parameters

• newCorrelation – A Correlation representing the new correlation. Or a tuple
(parentTicks, selfTicks) representing the correlation.

• newSpeed – New speed as a float.

New in version 0.4.

setError(current, growthRate=0)
Set the current error bounds of this clock and the rate at which it grows per tick of the parent clock.

Parameters

• current – Potential error (in seconds) of the clock at this time.

• growthRate – Amount by which error will grow for every tick of the parent clock.

New in version 0.4.

setParent(newParent)

Change the parent of this clock (if supported). Will generate a notification of change.

(Documentation inherited from ClockBase)

slew
This is an alternative method of querying or adjusting the speed property.

The slew (in ticks per second) currently applied to this clock.

Setting this property will set the speed property to correspond to the specified slew.

For example: for a clock with tickRate of 100, then a slew of -25 corresponds to a speed of 0.75

speed

(read/write float) The speed at which the clock is running. Does not change the reported tickRate
value, but will affect how ticks are calculated from parent clock ticks. Default = 1.0 = normal tick
rate.

(Documentation inherited from ClockBase)

tickRate
Read or change the tick rate (in ticks per second) of this clock. The value read is not affected by the value
of the speed property.

ticks
(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

toOtherClockTicks(otherClock, ticks)
Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.
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Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters

• otherClock – A clock object representing another clock.

• ticks – A time (tick value) for this clock

Returns The tick value of the otherClock that represents the same moment in time, or Not a
number (nan)

Throws NoCommonClock if there is no common ancestor clock (meaning it is not possible to
convert

toParentTicks(ticks)

Method to convert from a tick value for this clock to the equivalent tick value (representing the
same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value of this clock converted to the timescale of the parent
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

toRootTicks(t)
Return the time for the root clock corresponding to a given time of this clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters t – Tick value for this clock.

Returns Corresponding tick value of the root clock, or Not a number (nan)

New in version 0.4.

unbind(dependent)
Unbind from notification if this clock changes.

Parameters dependent – The dependent to unbind from receiving notifications.

RangeCorrelatedClock - Clock correlated to another clock

class dvbcss.clock.RangeCorrelatedClock(parentClock, tickRate, correlation1, correlation2,
**kwargs)

A clock locked to the tick count of the parent clock by two different points of correlation.

This relationship can be illustrated as follows:
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The tickRate you set is purely advisory - it is the tickRate reported to clocks that use this clock as the parent,
and may differ from what the reality of the two correlations represents!

Parameters

• parentClock – The parent clock for this clock.

• tickRate – The advisory tick rate (ticks per second) for this clock.

• correlation1 – (Correlation) or tuple (parentTicks, selfTicks). The first point of
correlation for this clock.

• correlation2 – (Correlation) or tuple (parentTicks, selfTicks). The second point
of correlation for this clock.

bind(dependent)
Bind for notification if this clock changes.

Parameters dependent – When this clock changes, the notify()method of this dependent
will be called, passing a single argument that is this clock.

calcWhen(ticksWhen)

Return “when” in terms of the underlying clock behind the root clock implementation (e.g.
monotonic_time.time() in the case of SysClock). Will return Not a number (nan)
if the conversion is not possible (e.g. when current speed is zero and ticksWhen does not
match the current correlation.childTicks).

(Documentation inherited from ClockBase)

clockDiff(otherClock)
Calculate the potential for difference between this clock and another clock.

Parameters otherClock – The clock to compare with.

Returns The potential difference in units of seconds. If effective speeds or tick rates differ, this
will always be float (“+inf”).

If the clocks differ in effective speed or tick rate, even slightly, then this means that the clocks will eventu-
ally diverge to infinity, and so the returned difference will equal +infinity.
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New in version 0.4.

correlation1
Read or change the first correlation of this clock to its parent clock.

Assign a new Correlation or tuple (parentTicks, childTicks) to change the correlation.

correlation2
Read or change the first correlation of this clock to its parent clock.

Assign a new Correlation to change the correlation.

dispersionAtTime(t)
Calculates the dispersion (maximum error bounds) at the specified clock time. This takes into account the
contribution to error of this clock and its ancestors.

Returns Dispersion (in seconds) at the specified clock time.

New in version 0.4.

fromParentTicks(ticks)

Method to convert from a tick value for this clock’s parent to the equivalent tick value (represent-
ing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value for the parent clock converted to the timescale of this
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

fromRootTicks(t)
Return the time for this clock corresponding to a given time of the root clock.

Parameters t – Tick value of the root clock.

Returns Corresponding tick value of this clock.

New in version 0.4.

getAncestry()
Retrieve the ancestry of this clock as a list.

Returns A list of clocks, starting with this clock, and proceeding to its parent, then its parent’s
parent etc, ending at the root clock.

New in version 0.4.

getEffectiveSpeed()
Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root
clock.

getParent()

returns ClockBase representing the immediate parent of this clock, or None if it is a
root clock.

(Documentation inherited from ClockBase)

getRoot()
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Returns The root clock for this clock (or itself it has no parent).

New in version 0.4.

getRootMaxFreqError()
Return potential error of underlying clock (e.g. system clock).

Returns The maximum potential frequency error (in parts-per-million) of the underlying root
clock.

This is a partial stub method. It must be re-implemented by root clocks.

For a clock that is not the root clock, this method will pass through the call to the same method of the root
clock.

New in version 0.4.

isAvailable()
Returns whether this clock is available, taking into account the availability of any (parent) clocks on which
it depends.

Returns True if available, otherwise False.

New in version 0.4.

nanos
(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick
rate (but ignoring the speed property).

nanosToTicks(nanos)
Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring
the speed property).

Parameters nanos – nanoseconds value

Returns number of ticks equivalent to the supplied nanosecond value

notify(cause)
Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying
timing source.

Parameters cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

setAvailability(availability)
Set the availability of this clock.

Parameters availability – True if this clock is available, otherwise False.

If setting the availability of this clock changes the overall availability of this clock (as returned by
isAvailable()) then dependents will be notified of the change.

New in version 0.4.

setParent(newParent)

Change the parent of this clock (if supported). Will generate a notification of change.

(Documentation inherited from ClockBase)

speed

(read/write float) The speed at which the clock is running. Does not change the reported tickRate
value, but will affect how ticks are calculated from parent clock ticks. Default = 1.0 = normal tick
rate.
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(Documentation inherited from ClockBase)

tickRate
Read the tick rate (in ticks per second) of this clock. The value read is not affected by the value of the
speed property.

ticks
(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

toOtherClockTicks(otherClock, ticks)
Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters

• otherClock – A clock object representing another clock.

• ticks – A time (tick value) for this clock

Returns The tick value of the otherClock that represents the same moment in time, or Not a
number (nan)

Throws NoCommonClock if there is no common ancestor clock (meaning it is not possible to
convert

toParentTicks(ticks)

Method to convert from a tick value for this clock to the equivalent tick value (representing the
same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when perform-
ing the conversion.

returns The specified tick value of this clock converted to the timescale of the parent
clock.

throws StopIteration if this clock has no parent

(Documentation inherited from ClockBase)

toRootTicks(t)
Return the time for the root clock corresponding to a given time of this clock.

Will return Not a number (nan) if the conversion is not possible (e.g. when current speed is zero and
ticksWhen does not match the current correlation.childTicks).

Parameters t – Tick value for this clock.

Returns Corresponding tick value of the root clock, or Not a number (nan)

New in version 0.4.

unbind(dependent)
Unbind from notification if this clock changes.

Parameters dependent – The dependent to unbind from receiving notifications.
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Correlation - represents a Correlation

class dvbcss.clock.Correlation(parentTicks, childTicks, initialError=0, errorGrowthRate=0)
Immutable object representing a correlation. This can also optionally include bounds for the potential for error
if the correlation is used to model a clock.

The correlation (parentTicks, ticks) represents a relationship between a (child) clock and its parent. The time
parentTicks of the parent corresponds to the time ticks of the child.

Parameters

• parentTicks – Time of the parent clock.

• childTcks – Corresponding time of the clock using this correlation.

• initialError – Optional (default=0). The amount of potential error (in seconds) at the
moment represented by the correlation.

• errorGrowthRate – Optional (default=0). The rate of growth of error (e.g. how many
seconds error increases by per second of the parent clock)

This class is intended to be immutable. Instead of modifying a correlation, create a new one based on an existing
one. The butWith() method is designed to assist with this.

..note:

For backwards compatibility with pydvbcss v0.3 and earlier, this object can
also be treated as if it is a tuple (parentTicks, childTicks), for example:

..code-block:: python

c = Correlation(1,5, 0.1, 0.005)

# unapacking using an expression assignment
parentTicks, childTicks = c

# accessing by index
parentTicks = c[0]
childTicks = c[1]

New in version 0.4.

butWith(parentTicks=None, childTicks=None, initialError=None, errorGrowthRate=None)
Return a new correlation the same as this one but with the specified changes.

Parameters

• parentTicks – Optional. A new Time of the parent clock.

• childTcks – Optional. The corresponding time of the clock using this correlation.

• initialError – Optional. The amount of potential error (in seconds) at the moment
represented by the correlation.

• errorGrowthRate – Optional. The rate of growth of error (e.g. how many seconds
error increases by per second of the parent clock)

Returns New Correlation based on this one, but with the changes specified by the parame-
ters.

If a parameter is set to None or not provided, then the existing value is taken from this correlation object.

childTicks
Number representing a time of the child clock, that corresponds to the parentTicks time of the parent clock.
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errorGrowthRate
Number representing the amount that the potential for error will grow by (in units of seconds) for every
tick of the parent clock. Default value is 0 if not set.

initialError
Number representing the amount of potential error (in units of seconds) at the moment represented by the
correlation. Default value is 0 if not set.

parentTicks
Number representing a time of the parent clock.

3.3 Task scheduling for clocks

Module: dvbcss.task

• Introduction

• Example

• Functions

3.3.1 Introduction

The dvbcss.task module provides sleep and scheduling functions for use with the dvbcss.clock module.
These functions track adjustments to clocks (such as changes in the tick rate or tick value/offset) to ensure that the
sleep or scheduled event happen when the clock actually reaches the target tick count value.

To use this module, just import it and directly call the functions sleepFor(), sleepUntil(),
scheduleEvent() or runAt().

Note: Scheduling happens on a single thread, so if you use the runAt() function, try to keep the callback code as
fast and simple as possible, so that it returns control as quickly as possible.

See How the dvbcss.task module works internally for information on how the internals of the Task module work.

3.3.2 Example

A simple example:

from dvbcss.clock import SysClock
from dvbcss.clock import CorrelatedClock
from dvbcss.task import sleepFor, runAt

s = SysClock()
c = CorrelatedClock(parentClock=s, tickRate=1000)

# wait 1 second
sleepFor(c, numTicks=1000)

# schedule callback in 5 seconds
def foo(message):
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print "Callback!", message

runAt(clock=c, whenTicks=c.ticks+5000, foo, "Tick count progressed by 5 seconds")

# ... but change the correlation to make the clock jump 1 second forward
# causing the callback to happen one second earlier
c.correlation = (c.correlation[0], c.correlation[1] + 1000)

# ... the callback will now happen in 4 seconds time instead

3.3.3 Functions

dvbcss.task.sleepUntil(clock, whenTicks)
Sleep until the specified clock reaches the specified tick value.

Parameters

• clock – (dvbcss.clock.ClockBase) Clock to sleep against the ticks of.

• whenTicks – (int) The tick value of the clock at which this function returns.

Returns after the specified tick value is reached.

dvbcss.task.sleepFor(clock, numTicks)
Sleep for the number of ticks of the specified clock.

Parameters

• clock – (dvbcss.clock.ClockBase) Clock to sleep against the ticks of.

• numTicks – (int) The number of ticks to sleep for.

Returns after the elapsed number of ticks of the specified clock have passed.

dvbcss.task.scheduleEvent(clock, whenTicks, event)
Schedule the threading.Event to be called when the specified clock reaches (or passes) the specified tick
value.

Parameters

• clock – (dvbcss.clock.ClockBase) Clock to schedule the event against

• whenTicks – (int) The tick value of the clock at which the event is to be triggered.

• event – (threading.Event) python Event object that the :method:threading.Event.set
method will be called on at the scheduled time

dvbcss.task.runAt(clock, whenTicks, callBack, args=None, kwargs=None)
Call the specified callback function when the specified clock reaches (or passes) the specified tick value.

The callback happens on the single thread used within the clock scheduling system. You should avoid writing
code that hogs this thread to do substantial processing.

Parameters

• clock – (dvbcss.clock.ClockBase) Clock to schedule the callback against

• whenTicks – (int) The tick value of the clock at which the callback is to be called.

• callback – (callable) Function to be called

• args – A list of positional arguments to be passed to the callback function when it is
called.
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• kwargs – A dict of keyword arguments to be pased to the callback function when it is
called.

The dvbcss.monotonic_time module provides a time() and sleep() functions equivalent to those in the
standard python library time module. However these are guaranteeed to be monotonic and use the highest precision
time sourcecs available (depending on the host operating system).

The dvbcss.clock module provides high level abstractions for representing clocks and timelines and the relation-
ships between them. The client and server implementations for the DVB-CSS protocols use these objects to represent
clocks and timelines.

The:mod:Task module provides sleep and task scheduling functions that work with clock objects and allow code
to be called when a clock reaches a particular tick value, even if that clock is adjusted in some way after the task is
scheduled.
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CHAPTER 4

Internal implementation details

4.1 Protocol server implementation details

• CSS-WC

– Overview

– Classes

• CSS-CII and CSS-TS

– Overview

– Classes

4.1.1 CSS-WC

Overview

The CSS-WC server is based on a simple generic framework for building UDP servers

Classes

class dvbcss.protocol.server.wc.UdpRequestServer(socket, handler, maxMsgSize)
Simple request handling server framework.

Pass it an open UDP socket object that blocks on receive, and it will call your handler, passing the socket, plus
the received data.

This all happens in a separate thread.

Use start() and stop() methods to start and stop the handling thread.
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Socket must have set blocking and a timeout.

Parameters

• socket (socket.socket) – Bound socket ready to receive (and send) UDP packets

• handler – (object) Object providing a handle() method.

• maxMsgSize (int) – The maximum message size (sets the UDP receive buffer size)

The handler object must have a method with the following signature:

handle(socket, received_data, src_addr)
Parameters

• socket – The socket object for the connection on which the packet was re-
ceived.

• received_data (str) – The received UDP packet payload
• src_addr – The source address. For an AF_INET connection this will be a tuple

(str host, int port)

run()
Internal method - the main runloop of the thread.

Runs in a loop calling the handle() method of the object assigned to the handler property whenever
a UDP packet is received.

Does not return until the _pleaseStop attribute of the object has been set to True

start()
Starts the wall clock server running. It runs in a thread in the background.

stop()
Stops the wall clock server running. Does not return until the thread has terminated.

class dvbcss.protocol.server.wc.WallClockServerHandler(wallClock, precision-
Secs=None, maxFre-
qErrorPpm=None, fol-
lowup=False, **kwargs)

Simple Wall Clock Server Handler function.

Provides a handle() method. Designed to be used with UdpRequestServer

Parameters

• wallClock (dvbcss.clock.ClockBase) – The clock to be used as the wall clock
for protocol interactions

• precisionSecs – (float) Optional. Override using the precision of the provided clock
and instead use this value. It is the precision (in seconds) to be reported for the clock in
protocol interactions

• maxFreqErrorPpm – (float or None) Optional. Override using the
getRootMaxFreqError() of the clock and instead use this value. It is the clock
maximum frequency error in parts-per-million

• followup (bool) – Set to True if the Wall Clock Server should send follow-up responses

4.1.2 CSS-CII and CSS-TS

Module: dvbcss.protocol.server
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Overview

The CSS-CII and CSS-TS servers subclass the WebSocket server functionality for cherrypy implemented by ws4py in
the cherrypyserver module.

CIIServer and TSServer both inherit from a common base implementation WSServerTool provided in the
dvbcss.protocol.server module.

The Tool provides the hook into cherrypy for handling the connection request and upgrading it to a WebSocket con-
nection, spawning an object representing the WebSocket connection and which implements the WebSocket protocols.

The base server object class is intended to manage all WebSocket connections for a particular server endpoint. It
therefore provides its own customised WebScoket class that is bound to that particular server object instance.

The tool is enabled via an “on” configuration when setting up the mount point in cherrypy. The tool also expects to a
“handler_cls” property set in the configuration at the mount point. This property points to a WebSocket class which
can be instantiated to handle the connection.

Example usage: creating a server at “ws://<host>:80/endpoint” just using the base classes provided here:

import cherrypy
from ws4py.server.cherrypyserver import WebSocketPlugin
from dvbcss.protocol.server import WSServerBase, WSServerTool

# plug the tool into cherrypy as "my_server"
cherrypy.tools.my_server = WSServerTool()

WebSocketPlugin(cherrypy.engine).subscribe()

# create my server
myServer = WSServerBase()

# bind it to the URL path /endpoint in the cherrypy server
class Root(object):

@cherrypy.expose
def endpoint(self):

pass

cfg = {"/endpoint": {'tools.my_server.on': True,
'tools.my_server.handler_cls': myServer.handler

}
}

cherrypy.tree.mount(Root(), "/", config=cfg)

# activate cherrypy web server on port 80
cherrypy.config.update({"server.socket_port":80})
cherrypy.engine.start()

See documentation for WSServerBase for information on creating subclasses to implement specific endpoints.

Classes

class dvbcss.protocol.server.ConnectionIdGen
Object for generating unique connection id strings.

classmethod next()

Returns new unique connection id string
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class dvbcss.protocol.server.WSServerTool
Subclass of the ws4py.server.cherrypyserver.WebSocketTool tool to do a simultaneous connec-
tions limit check and enabled/disabled check for the end point before the handler is invoked

cleanup_headers()
Some clients aren’t that smart when it comes to headers lookup.

complete()
Override of the base implementation of the code to install a callback to notify the websocket once the
upgrade is complete.

Cherrypy’s normal “completion” callbacks fire /before/ cherrypy has flushed outgoing data to the socket
connection, creating a race-condition between the flush happening and the websocket class starting to write
outgoing messages.

This replacement handler is guaranteed to fire /after/ cherrypy has flushed and is no longer using the socket
connection.

start_handler()
Runs at the end of the request processing by calling the opened method of the handler.

upgrade(*args, **kwargs)
Override of base implementation of the code to handle a connection “upgrade” (part of the WebSocket
handshake).

The “handler_cls” for this tool is passed as an argument and it implements methods to check whether:

1. The end point is enabled. If not then a 403 “Forbidden” response is returned.

2. A connection can be allocated (the connection limit is not yet reached). If not then a 503 “Service
Unavailable” response is returned.

If neither of these tests fail, then the superclass upgrade operation is allowed to proceed.

class dvbcss.protocol.server.WSServerBase(maxConnectionsAllowed=-1, enabled=True)
Base class for WebSocket server endpoint implementation.

Parameters

• maxConnectionsAllowed (int) – -1 to allow unlimited connections, otherwise sets
the maximum number of concurrent connections from clients.

• enabled (bool) – Whether this server starts off enabled or disabled.

When the server is “disabled” it will refuse attempts to connect by sending the HTTP status response 403
“Forbidden”.

When the server has reached its connection limit, it will refuse attempts to connect by sending the HTTP status
response 503 “Service unavailable”.

Protocol specific implementations inherit from this base class and override stub methods and class attributes.
When subclassing you will want to override:

• getDefaultConnectionData()

• onClientConnect()

• onClientDisconnect()

• onClientMessage()

The WebSocket connection object representing each connection is used as a handle for the connection.
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This class stores per connection connection data. What that data is is entirely up to the subclass. The
getDefaultConnectionData() method provides the initial data for a connection when it is opened.
The _connections instance variable then keeps a mapping from websocket connections to that data.

handler
Handler class for new connections. Should be provided as a configuration argument to cherrypy.

_connections
dict mapping WebSocket objects to connection data. Connection data is for use by subclasses to store data
specific to each individual connection.

_addConnection(webSock)
Internal method. Called to notify this class of a newly connected websocket.

Parameters webSock – (WebSocket) The newly connected Websocket.

_makeHandlerClass(connectionIdPrefix)

Parameters connectionIdPrefix – (str) Human-readable prefix to be put on connection-
ids

Returns WebSocketHandler class, which is a subclass of ws4py.websocket.
WebSocket that is unique to this server instance.

_receivedMessage(webSock, message)
Internal method. Called to notify this class of a websocket message arrival.

Parameters

• webSock – (WebSocket) The WebSocket connection on which the message arrived.

• msg – (Message) WebSocket message that has been received. Will be either a Text or
a Binary message.

_removeConnection(webSock)
Internal method. Called to notify this class of a websocket disconnection.

Parameters webSock – (WebSocket) The now disconnected Websocket.

connectionIdPrefix = ‘serverbase’
prefix to be used for connection ids

enabled
(read/write bool) Whether this server endpoint is enabled (True) or disabled (False).

Set this property enable or disable the endpoint.

When disabled, existing connections are closed with WebSocket closure reason code 1001 and new at-
tempts to connect will be refused with HTTP response status code 403 “Forbidden”.

getConnections()

Returns dict mapping a WebSocket object to connection related data for all connections to
this server. This is a snapshot of the connections at the moment the call is made. The
dictionary is not updated later if new clients connect or existing ones disconnect.

getDefaultConnectionData()
This function is called to create new server-specific connection data when a new client connects. This is
stored against the websocket connection and can be retrieved using the getConnections() method.

Override with your own function that returns data to be stored against new connections :returns: empty
dict, but can return anything you like.

loggingName = ‘dvb-css.protocol.server.WSServerBase’
name used for logging messages
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onClientConnect(webSock)
This method is called when a new client connects.

This is a stub for this method. Sub-classes should implement it.

:param webSock:(WebSocket) The object representing the WebSocket connection of the newly con-
nected client

onClientDisconnect(webSock, connectionData)
This method is called after a client is disconnected.

This is a stub for this method. Sub-classes should implement it.

Parameters

• webSock – (WebSocket) The object representing the WebSocket connection of the
now-disconnected client

• connectionData – (dict) of connection data relating to this connection.

onClientMessage(webSock, msg)
This method is called when a message is received from a client.

This is a stub for this method. Sub-classes should implement it.

Parameters

• webSock – (WebSocket) The object representing the WebSocket connection from
which the message has been received.

• msg – (Message) WebSocket message that has been received. Will be either a Text or
a Binary message.

class .WebSocketHandler(WebSocket)
This class is created and returned by the WSServerBase._makeHandlerClass() method and each class
returned is bound to the instance of WSServerBase that created it.

It is intended to be provided to cherrypy as the “handler_cls” configuration parameter for the WebSocket tool.
It is instantiated for every connection made.

These are subclasses of the ws4py WebSocket class and represent an individual WebSocket connection.

Instances of this class call through to WSServerBase._addConnection() and WSServerBase.
_removeConnection() and WSServerBase._receivedMessage() to inform the parent server of
the WebSocket opening, closing and receiving messages.

classmethod isEnabled(cls)

Returns True if the server endpoint is enabled, otherwise False.

classmethod canAllocateConnection(cls)

Returns True only if the connection limit of the parent server has not yet been reached. Other-
wise False.

id(self)

Returns A human readable connection ID
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4.2 How the dvbcss.task module works internally

4.2.1 Introduction

The dvbcss.task module internally implements a task scheduler based around a single daemon thread with an
internal priority queue.

Sleep and callback methods cause a task objet to be queued. The scheduler picks up the queued task and adds it to
the priority queue and binds to the Clock so that it is notified of adjustments to the clock. When a task is added to
the queue, the clock is queried to calculate the true time at which the tick count is expected to be reached by calling
dvbcss.clock.ClockBase.calcWhen()

If a clock is adjusted the affected tasks are marked as deprecated (but remain in the priority queue) and new tasks are
rescheduled with a recalculated time.

When one of the clocks involved has speed 0, then it may not be possible to calculate the time at which the task is to
be scheduled. This happens when dvbcss.clock.ClockBase.calcWhen() returns Not a number (nan). The
task will not be immediately added to the priority queue, however it will be added later once the clock speed returns
to a non-zero value. This happens automatically as part of the rescheduling process when a clock is adjusted.

4.2.2 Objects

dvbcss.task.scheduler = <dvbcss.task._Scheduler object>
Task scheduler. Starts an internal threading.Thread with theading.Thread.daemon set to True.

This is an internal of the Task module. For normal use you should not need to access it.

Variables

• taskheap – the priority queue of tasks

• addQueue – threadsafe queue of tasks to be added to the priority queue

• rescheduleQueue – thereadsafe queue of clocks that have been adjusted and therefore
which need to trigger rescheduling of tasks

• updateEvent – theading.Event used to wake the scheduler thread whenever there
is work pending (items added to addQueue or rescheduleQueue)

• clock_Tasks – mapping of clocks to takss that depend on them

Running instance of the dvbcss.task._Scheduler

4.2.3 Classes

class dvbcss.task._Scheduler(*args, **kwargs)
Task scheduler. Starts an internal threading.Thread with theading.Thread.daemon set to True.

This is an internal of the Task module. For normal use you should not need to access it.

Variables

• taskheap – the priority queue of tasks

• addQueue – threadsafe queue of tasks to be added to the priority queue

• rescheduleQueue – thereadsafe queue of clocks that have been adjusted and therefore
which need to trigger rescheduling of tasks
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• updateEvent – theading.Event used to wake the scheduler thread whenever there
is work pending (items added to addQueue or rescheduleQueue)

• clock_Tasks – mapping of clocks to takss that depend on them

Starts the scheduler thread at initialisation.

notify(causeClock)
Callback entry point for when a clock is adjusted

Parameters causeClock – (dvbcss.clock.ClockBase) The clock that was adjusted
and is therefore causing this notification of adjustment.

run()
Main runloop of the scheduler.

While looping:

1. Checks the queue of tasks to be added to the scheduler

The time the task is due to be executed is calculated and used as the sort key when the task
is inserted into a priority queue.

2. Checks any queued requests to reschedule tasks (due to clock adjustments)

The existing task in the scheduler priority queue is “deprecated” And a new task is scheduled
with the revised time of execution

3. checks any tasks that need to now be executed

Dequeues them and executes them, or ignores them if they are marked as deprecated

schedule(clock, whenTicks, callBack, args, kwargs)
Queue up a task for scheduling

Parameters

• clock – (dvbcss.clock.ClockBase) the clock against which the task is scheduled

• whenTicks – (int) The tick value of the clock at which the scheduled task is to be exe-
cuted

• callback – (func) The function (the task) that will be called at the scheduled time

• args – (list) List of arguments to be passed to the function when it is invoked

• kwargs – (dict) Dictionary of keyword arguments to be passed to the function when it is
invoked

stop()
Stops the scheduler if it is running.

class dvbcss.task._Task(clock, whenTicks, callBack, args, kwargs, n=0)
Representation of a scheduled task. This is an internal of the Task module. For normal use you should not need
to acess it.

Initialiser

Parameters

• clock – (dvbcss.clock.ClockBase) the clock against which the task is scheduled

• whenTicks – (int) The tick value of the clock at which the scheduled task is to be executed

• callback – (func) The function (the task) that will be called at the scheduled time
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• args – (list) List of arguments to be passed to the function when it is invoked

• kwargs – (dict) Dictionary of keyword arguments to be passed to the function when it is
invoked

• n – (int) Generation count. Incremented whenever the task is based on a previous task (i.e.
it is a rescheduled task)

regenerateAndDeprecate()
Sets the deleted flag of this task to True, and returns a new task the same as this one but not deleted and
with the scheduled time ‘when’ recalculated from the clock

Here are some details on parts of the internal implementation of aspects of this library.

• modindex | Full Index

This collection of Python modules provides clients and servers for the network protocols defined in the DVB “Com-
panion Screens and Streams” (CSS) specification ETSI 103 286 part 2. There are also supporting classes that model
clocks (e.g. to represent timelines) and their inter-relationships.

Use it to build clients and servers for each of the protocols (CSS-WC, CSS-CII and CSS-TS) that mock or simulate
the roles of TV Devices and Companion Screen Applications for testing and prototyping.

To use this library you need to have a working understanding of these protocols and, of course, the Python program-
ming language.
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CHAPTER 5

Getting started

1. Install, following the instructions in the README.

2. Try to Run the examples.

3. Read the docs for the DVB CSS Protocol modules.

4. Use the library in you own code
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CHAPTER 6

State of implementation

This library does not currently implement the CSS-TE or CSS-MRS protocols (from the DVB specification).

There are some unit tests but these mainly only cover the calculations done within clock objects and the packing and
unpacking of JSON messages.
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CHAPTER 7

Upgrading from previous versions

See the release notes / change log for details of what is new in this version of pydvbcss.
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CHAPTER 8

License and Contributing

pydvbcss is licensed as open source software under the terms of the Apache License v2.0.

See the CONTRIBUTING and AUTHORS files for information on how to contribute and who has contributed to this
library.
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CHAPTER 9

Contact and discuss

There is a pydvbcss google group for announcements and discussion of this library.
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addCandidate() (dvbcss.protocol.client.wc.algorithm._filterpredict.

method), 63
adjustTicks() (dvbcss.clock.TunableClock method), 99
algorithm (dvbcss.protocol.client.wc.WallClockClient at-

tribute), 64
algorithm() (dvbcss.protocol.client.wc.algorithm.

method), 61
allProperties() (dvbcss.protocol.cii.CII class method), 14
AptEptLpt (class in dvbcss.protocol.ts), 32
attachSink() (dvbcss.protocol.server.ts.SimpleTimelineSource

method), 49
attachSink() (dvbcss.protocol.server.ts.TimelineSource

method), 48
attachTimelineSource() (dvbcss.protocol.server.ts.TSServer

method), 46

B
bind() (dvbcss.clock.ClockBase method), 82
bind() (dvbcss.clock.CorrelatedClock method), 90
bind() (dvbcss.clock.OffsetClock method), 95

bind() (dvbcss.clock.RangeCorrelatedClock method),
104

bind() (dvbcss.clock.SysClock method), 85
bind() (dvbcss.clock.TunableClock method), 99
butWith() (dvbcss.clock.Correlation method), 108

C
calcCorrelationFor() (dvbcss.protocol.wc.Candidate

method), 58
calcQuality() (in module

dvbcss.protocol.client.wc.algorithm), 67
calcWhen() (dvbcss.clock.ClockBase method), 82
calcWhen() (dvbcss.clock.CorrelatedClock method), 91
calcWhen() (dvbcss.clock.OffsetClock method), 95
calcWhen() (dvbcss.clock.RangeCorrelatedClock

method), 104
calcWhen() (dvbcss.clock.SysClock method), 85
calcWhen() (dvbcss.clock.TunableClock method), 99
canAllocateConnection()

(dvbcss.protocol.server..WebSocketHandler
class method), 118

Candidate (class in dvbcss.protocol.wc), 57
checkCandidate() (dvbcss.protocol.client.wc.algorithm._filterpredict.

method), 63
childTicks (dvbcss.clock.Correlation attribute), 108
CII (class in dvbcss.protocol.cii), 12
cii (dvbcss.protocol.client.cii.CIIClient attribute), 18
cii (dvbcss.protocol.server.cii.CIIServer attribute), 25
CIIClient (class in dvbcss.protocol.client.cii), 18
CIIClientConnection (class in dvbcss.protocol.client.cii),

21
CIIServer (class in dvbcss.protocol.server.cii), 24
ciMatchesStem() (in module dvbcss.protocol.server.ts),

51
cleanup_headers() (dvbcss.protocol.server.WSServerTool

method), 116
ClockBase (class in dvbcss.clock), 82
clockDiff() (dvbcss.clock.ClockBase method), 82
clockDiff() (dvbcss.clock.CorrelatedClock method), 91
clockDiff() (dvbcss.clock.OffsetClock method), 95
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clockDiff() (dvbcss.clock.RangeCorrelatedClock
method), 104

clockDiff() (dvbcss.clock.SysClock method), 86
clockDiff() (dvbcss.clock.TunableClock method), 99
combine() (dvbcss.protocol.cii.CII method), 14
complete() (dvbcss.protocol.server.WSServerTool

method), 116
connect() (dvbcss.protocol.client.cii.CIIClient method),

19
connect() (dvbcss.protocol.client.cii.CIIClientConnection

method), 21
connect() (dvbcss.protocol.client.ts.TSClientClockController

method), 39
connect() (dvbcss.protocol.client.ts.TSClientConnection

method), 37
connected (dvbcss.protocol.client.cii.CIIClient attribute),

18
connected (dvbcss.protocol.client.cii.CIIClientConnection

attribute), 21
connected (dvbcss.protocol.client.ts.TSClientClockController

attribute), 39
connected (dvbcss.protocol.client.ts.TSClientConnection

attribute), 37
ConnectionError (class in dvbcss.protocol.client), 71
ConnectionIdGen (class in dvbcss.protocol.server), 115
connectionIdPrefix (dvbcss.protocol.server.WSServerBase

attribute), 117
contentId (dvbcss.protocol.cii.CII attribute), 13
contentId (dvbcss.protocol.server.ts.TSServer attribute),

46
contentIdStatus (dvbcss.protocol.cii.CII attribute), 13
contentIdStem (dvbcss.protocol.ts.SetupData attribute),

31
contentTime (dvbcss.protocol.ts.Timestamp attribute), 33
ControlTimestamp (class in dvbcss.protocol.ts), 31
copy() (dvbcss.protocol.cii.CII method), 14
copy() (dvbcss.protocol.ts.AptEptLpt method), 33
copy() (dvbcss.protocol.ts.ControlTimestamp method),

32
copy() (dvbcss.protocol.ts.SetupData method), 31
copy() (dvbcss.protocol.wc.WCMessage method), 56
CorrelatedClock (class in dvbcss.clock), 89
Correlation (class in dvbcss.clock), 108
correlation (dvbcss.clock.CorrelatedClock attribute), 91
correlation (dvbcss.clock.TunableClock attribute), 99
correlation1 (dvbcss.clock.RangeCorrelatedClock at-

tribute), 105
correlation2 (dvbcss.clock.RangeCorrelatedClock at-

tribute), 105

D
decode() (dvbcss.protocol.cii.TimelineOption class

method), 15
definedProperties() (dvbcss.protocol.cii.CII method), 14

diff() (dvbcss.protocol.cii.CII class method), 14
disconnect() (dvbcss.protocol.client.cii.CIIClient

method), 19
disconnect() (dvbcss.protocol.client.cii.CIIClientConnection

method), 21
disconnect() (dvbcss.protocol.client.ts.TSClientClockController

method), 39
disconnect() (dvbcss.protocol.client.ts.TSClientConnection

method), 37
dispersionAtTime() (dvbcss.clock.ClockBase method),

82
dispersionAtTime() (dvbcss.clock.CorrelatedClock

method), 91
dispersionAtTime() (dvbcss.clock.OffsetClock method),

96
dispersionAtTime() (dvbcss.clock.RangeCorrelatedClock

method), 105
dispersionAtTime() (dvbcss.clock.SysClock method), 86
dispersionAtTime() (dvbcss.clock.TunableClock

method), 99
dvbcss.clock (module), 75
dvbcss.monotonic_time (module), 73
dvbcss.protocol (module), 8
dvbcss.protocol.cii (module), 11
dvbcss.protocol.client.cii (module), 16
dvbcss.protocol.client.ts (module), 33
dvbcss.protocol.client.wc (module), 59
dvbcss.protocol.client.wc.algorithm (module), 59
dvbcss.protocol.server (module), 113
dvbcss.protocol.server.cii (module), 22
dvbcss.protocol.server.ts (module), 40
dvbcss.protocol.server.wc (module), 67
dvbcss.protocol.ts (module), 28
dvbcss.protocol.wc (module), 54
dvbcss.task (module), 109

E
earliest (dvbcss.protocol.ts.AptEptLpt attribute), 33
earliestClock (dvbcss.protocol.client.ts.TSClientClockController

attribute), 39
enabled (dvbcss.protocol.server.cii.CIIServer attribute),

25
enabled (dvbcss.protocol.server.ts.TSServer attribute), 46
enabled (dvbcss.protocol.server.WSServerBase attribute),

117
encode() (dvbcss.protocol.cii.TimelineOption class

method), 16
encodePrecision() (dvbcss.protocol.wc.WCMessage class

method), 56
errorGrowthRate (dvbcss.clock.Correlation attribute),

109
examples (module), 1
examples.CIIClient (module), 5
examples.CIIServer (module), 5
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examples.TSClient (module), 6
examples.TSServer (module), 6
examples.TVDevice (module), 7
examples.WallClockClient (module), 4
examples.WallClockServer (module), 4

F
FilterAndPredict() (in module

dvbcss.protocol.client.wc.algorithm), 67
FilterLowestDispersionCandidate (class in

dvbcss.protocol.client.wc.algorithm._filterpredict),
66

FilterRttThreshold (class in
dvbcss.protocol.client.wc.algorithm._filterpredict),
66

fromParentTicks() (dvbcss.clock.ClockBase method), 82
fromParentTicks() (dvbcss.clock.CorrelatedClock

method), 91
fromParentTicks() (dvbcss.clock.OffsetClock method),

96
fromParentTicks() (dvbcss.clock.RangeCorrelatedClock

method), 105
fromParentTicks() (dvbcss.clock.SysClock method), 86
fromParentTicks() (dvbcss.clock.TunableClock method),

99
fromRootTicks() (dvbcss.clock.ClockBase method), 83
fromRootTicks() (dvbcss.clock.CorrelatedClock

method), 91
fromRootTicks() (dvbcss.clock.OffsetClock method), 96
fromRootTicks() (dvbcss.clock.RangeCorrelatedClock

method), 105
fromRootTicks() (dvbcss.clock.SysClock method), 86
fromRootTicks() (dvbcss.clock.TunableClock method),

100

G
getAncestry() (dvbcss.clock.ClockBase method), 83
getAncestry() (dvbcss.clock.CorrelatedClock method),

92
getAncestry() (dvbcss.clock.OffsetClock method), 96
getAncestry() (dvbcss.clock.RangeCorrelatedClock

method), 105
getAncestry() (dvbcss.clock.SysClock method), 86
getAncestry() (dvbcss.clock.TunableClock method), 100
getConnections() (dvbcss.protocol.server.cii.CIIServer

method), 25
getConnections() (dvbcss.protocol.server.ts.TSServer

method), 46
getConnections() (dvbcss.protocol.server.WSServerBase

method), 117
getControlTimestamp() (dvbcss.protocol.server.ts.TimelineSource

method), 48
getCurrentDispersion() (dvbcss.protocol.client.wc.algorithm.LowestDispersionCandidate

method), 65

getCurrentDispersion() (dvbcss.protocol.client.wc.algorithm.MostRecent
method), 66

getDefaultConnectionData()
(dvbcss.protocol.server.ts.TSServer method),
46

getDefaultConnectionData()
(dvbcss.protocol.server.WSServerBase
method), 117

getEffectiveSpeed() (dvbcss.clock.ClockBase method),
83

getEffectiveSpeed() (dvbcss.clock.CorrelatedClock
method), 92

getEffectiveSpeed() (dvbcss.clock.OffsetClock method),
96

getEffectiveSpeed() (dvbcss.clock.RangeCorrelatedClock
method), 105

getEffectiveSpeed() (dvbcss.clock.SysClock method), 86
getEffectiveSpeed() (dvbcss.clock.TunableClock

method), 100
getMaxFreqError() (dvbcss.protocol.wc.WCMessage

method), 56
getParent() (dvbcss.clock.ClockBase method), 83
getParent() (dvbcss.clock.CorrelatedClock method), 92
getParent() (dvbcss.clock.OffsetClock method), 96
getParent() (dvbcss.clock.RangeCorrelatedClock

method), 105
getParent() (dvbcss.clock.SysClock method), 86
getParent() (dvbcss.clock.TunableClock method), 100
getPrecision() (dvbcss.protocol.wc.WCMessage method),

56
getRoot() (dvbcss.clock.ClockBase method), 83
getRoot() (dvbcss.clock.CorrelatedClock method), 92
getRoot() (dvbcss.clock.OffsetClock method), 96
getRoot() (dvbcss.clock.RangeCorrelatedClock method),

105
getRoot() (dvbcss.clock.SysClock method), 87
getRoot() (dvbcss.clock.TunableClock method), 100
getRootMaxFreqError() (dvbcss.clock.ClockBase

method), 83
getRootMaxFreqError() (dvbcss.clock.CorrelatedClock

method), 92
getRootMaxFreqError() (dvbcss.clock.OffsetClock

method), 96
getRootMaxFreqError() (dvbcss.clock.RangeCorrelatedClock

method), 106
getRootMaxFreqError() (dvbcss.clock.SysClock

method), 87
getRootMaxFreqError() (dvbcss.clock.TunableClock

method), 100
getStatusSummary() (dvbcss.protocol.client.ts.TSClientClockController

method), 39
getWorstDispersion() (dvbcss.protocol.client.wc.algorithm.LowestDispersionCandidate

method), 65
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H
handler (dvbcss.protocol.server.cii.CIIServer attribute),

25
handler (dvbcss.protocol.server.ts.TSServer attribute), 46
handler (dvbcss.protocol.server.WSServerBase attribute),

117

I
id() (dvbcss.protocol.server..WebSocketHandler method),

118
initialError (dvbcss.clock.Correlation attribute), 109
isAvailable() (dvbcss.clock.ClockBase method), 83
isAvailable() (dvbcss.clock.CorrelatedClock method), 92
isAvailable() (dvbcss.clock.OffsetClock method), 97
isAvailable() (dvbcss.clock.RangeCorrelatedClock

method), 106
isAvailable() (dvbcss.clock.SysClock method), 87
isAvailable() (dvbcss.clock.TunableClock method), 100
isChangeSignificant() (dvbcss.clock.CorrelatedClock

method), 92
isChangeSignificant() (dvbcss.clock.TunableClock

method), 101
isControlTimestampChanged() (in module

dvbcss.protocol.server.ts), 52
isEnabled() (dvbcss.protocol.server..WebSocketHandler

class method), 118
isNanos (dvbcss.protocol.wc.Candidate attribute), 58

L
latest (dvbcss.protocol.ts.AptEptLpt attribute), 33
latestCII (dvbcss.protocol.client.cii.CIIClient attribute),

18
latestClock (dvbcss.protocol.client.ts.TSClientClockController

attribute), 39
latestCt (dvbcss.protocol.client.ts.TSClientClockController

attribute), 39
loggingName (dvbcss.protocol.server.WSServerBase at-

tribute), 117
LowestDispersionCandidate (class in

dvbcss.protocol.client.wc.algorithm), 64

M
maxFreqError (dvbcss.protocol.wc.Candidate attribute),

58
maxFreqError (dvbcss.protocol.wc.WCMessage at-

tribute), 56
measurePrecision() (in module dvbcss.clock), 82
MostRecent (class in dvbcss.protocol.client.wc.algorithm),

65
mrsUrl (dvbcss.protocol.cii.CII attribute), 13
msg (dvbcss.protocol.wc.Candidate attribute), 58
msgtype (dvbcss.protocol.wc.WCMessage attribute), 55

N
nanos (dvbcss.clock.ClockBase attribute), 83
nanos (dvbcss.clock.CorrelatedClock attribute), 92
nanos (dvbcss.clock.OffsetClock attribute), 97
nanos (dvbcss.clock.RangeCorrelatedClock attribute),

106
nanos (dvbcss.clock.SysClock attribute), 87
nanos (dvbcss.clock.TunableClock attribute), 101
nanosToTicks() (dvbcss.clock.ClockBase method), 84
nanosToTicks() (dvbcss.clock.CorrelatedClock method),

93
nanosToTicks() (dvbcss.clock.OffsetClock method), 97
nanosToTicks() (dvbcss.clock.RangeCorrelatedClock

method), 106
nanosToTicks() (dvbcss.clock.SysClock method), 87
nanosToTicks() (dvbcss.clock.TunableClock method),

101
next() (dvbcss.protocol.server.ConnectionIdGen class

method), 115
notify() (dvbcss.clock.ClockBase method), 84
notify() (dvbcss.clock.CorrelatedClock method), 93
notify() (dvbcss.clock.OffsetClock method), 97
notify() (dvbcss.clock.RangeCorrelatedClock method),

106
notify() (dvbcss.clock.SysClock method), 87
notify() (dvbcss.clock.TunableClock method), 101
notify() (dvbcss.protocol.server.ts.SimpleClockTimelineSource

method), 51
notify() (dvbcss.task._Scheduler method), 120

O
offset (dvbcss.clock.OffsetClock attribute), 97
offset (dvbcss.protocol.wc.Candidate attribute), 58
OffsetClock (class in dvbcss.clock), 95
OMIT (in module dvbcss.protocol), 70
onChange() (dvbcss.protocol.client.cii.CIIClient

method), 19
onCII() (dvbcss.protocol.client.cii.CIIClientConnection

method), 21
onCiiReceived() (dvbcss.protocol.client.cii.CIIClient

method), 19
onClientAptEptLpt() (dvbcss.protocol.server.ts.TSServer

method), 46
onClientConnect() (dvbcss.protocol.server.cii.CIIServer

method), 25
onClientConnect() (dvbcss.protocol.server.ts.TSServer

method), 46
onClientConnect() (dvbcss.protocol.server.WSServerBase

method), 117
onClientDisconnect() (dvbcss.protocol.server.cii.CIIServer

method), 25
onClientDisconnect() (dvbcss.protocol.server.ts.TSServer

method), 46
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onClientDisconnect() (dvbcss.protocol.server.WSServerBase
method), 118

onClientMessage() (dvbcss.protocol.server.cii.CIIServer
method), 26

onClientMessage() (dvbcss.protocol.server.ts.TSServer
method), 47

onClientMessage() (dvbcss.protocol.server.WSServerBase
method), 118

onClientSetup() (dvbcss.protocol.server.ts.TSServer
method), 47

onClockAdjusted() (dvbcss.protocol.client.wc.algorithm.LowestDispersionCandidate
method), 65

onConnected() (dvbcss.protocol.client.cii.CIIClient
method), 19

onConnected() (dvbcss.protocol.client.cii.CIIClientConnection
method), 21

onConnected() (dvbcss.protocol.client.ts.TSClientClockController
method), 39

onConnected() (dvbcss.protocol.client.ts.TSClientConnection
method), 37

onContentIdChange() (dvbcss.protocol.client.cii.CIIClient
method), 19

onContentIdStatusChange()
(dvbcss.protocol.client.cii.CIIClient method),
19

onControlTimestamp() (dvbcss.protocol.client.ts.TSClientConnection
method), 37

onDisconnected() (dvbcss.protocol.client.cii.CIIClient
method), 19

onDisconnected() (dvbcss.protocol.client.cii.CIIClientConnection
method), 21

onDisconnected() (dvbcss.protocol.client.ts.TSClientClockController
method), 39

onDisconnected() (dvbcss.protocol.client.ts.TSClientConnection
method), 37

onMrsUrlChange() (dvbcss.protocol.client.cii.CIIClient
method), 19

onPresentationStatusChange()
(dvbcss.protocol.client.cii.CIIClient method),
20

onPrivateChange() (dvbcss.protocol.client.cii.CIIClient
method), 20

onProtocolError() (dvbcss.protocol.client.cii.CIIClient
method), 20

onProtocolError() (dvbcss.protocol.client.cii.CIIClientConnection
method), 21

onProtocolError() (dvbcss.protocol.client.ts.TSClientClockController
method), 39

onProtocolError() (dvbcss.protocol.client.ts.TSClientConnection
method), 37

onProtocolVersionChange()
(dvbcss.protocol.client.cii.CIIClient method),
20

onTeUrlChange() (dvbcss.protocol.client.cii.CIIClient

method), 20
onTimelineAvailable() (dvbcss.protocol.client.ts.TSClientClockController

method), 39
onTimelinesChange() (dvbcss.protocol.client.cii.CIIClient

method), 20
onTimelineUnavailable()

(dvbcss.protocol.client.ts.TSClientClockController
method), 40

onTimingChange() (dvbcss.protocol.client.ts.TSClientClockController
method), 40

onTsUrlChange() (dvbcss.protocol.client.cii.CIIClient
method), 20

onWcUrlChange() (dvbcss.protocol.client.cii.CIIClient
method), 20

originalOriginate (dvbcss.protocol.wc.WCMessage at-
tribute), 56

originateNanos (dvbcss.protocol.wc.WCMessage at-
tribute), 56

P
pack() (dvbcss.protocol.cii.CII method), 14
pack() (dvbcss.protocol.cii.TimelineOption method), 16
pack() (dvbcss.protocol.ts.AptEptLpt method), 33
pack() (dvbcss.protocol.ts.ControlTimestamp method),

32
pack() (dvbcss.protocol.ts.SetupData method), 31
pack() (dvbcss.protocol.wc.WCMessage method), 56
parentTicks (dvbcss.clock.Correlation attribute), 109
precision (dvbcss.protocol.wc.Candidate attribute), 58
precision (dvbcss.protocol.wc.WCMessage attribute), 56
predictCorrelation() (dvbcss.protocol.client.wc.algorithm._filterpredict.

method), 63
PredictSimple (class in

dvbcss.protocol.client.wc.algorithm._filterpredict),
66

presentationStatus (dvbcss.protocol.cii.CII attribute), 13
private (dvbcss.protocol.cii.CII attribute), 14
private (dvbcss.protocol.cii.TimelineOption attribute), 15
private (dvbcss.protocol.ts.SetupData attribute), 31
protocolVersion (dvbcss.protocol.cii.CII attribute), 13

Q
quantifyChange() (dvbcss.clock.CorrelatedClock

method), 93
quantifyChange() (dvbcss.clock.TunableClock method),

101

R
RangeCorrelatedClock (class in dvbcss.clock), 103
rebaseCorrelationAtTicks()

(dvbcss.clock.CorrelatedClock method),
93

rebaseCorrelationAtTicks() (dvbcss.clock.TunableClock
method), 101
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receiveNanos (dvbcss.protocol.wc.WCMessage at-
tribute), 56

recognisesTimelineSelector()
(dvbcss.protocol.server.ts.TimelineSource
method), 48

regenerateAndDeprecate() (dvbcss.task._Task method),
121

removeSink() (dvbcss.protocol.server.ts.SimpleTimelineSource
method), 49

removeSink() (dvbcss.protocol.server.ts.TimelineSource
method), 48

removeTimelineSource()
(dvbcss.protocol.server.ts.TSServer method),
47

rtt (dvbcss.protocol.wc.Candidate attribute), 58
run() (dvbcss.protocol.server.wc.UdpRequestServer

method), 114
run() (dvbcss.protocol.server.wc.WallClockServer

method), 69
run() (dvbcss.task._Scheduler method), 120
runAt() (in module dvbcss.task), 110

S
schedule() (dvbcss.task._Scheduler method), 120
scheduleEvent() (in module dvbcss.task), 110
scheduler (in module dvbcss.task), 119
sendAptEptLpt() (dvbcss.protocol.client.ts.TSClientClockController

method), 40
sendTimestamp() (dvbcss.protocol.client.ts.TSClientConnection

method), 37
setAvailability() (dvbcss.clock.ClockBase method), 84
setAvailability() (dvbcss.clock.CorrelatedClock method),

93
setAvailability() (dvbcss.clock.OffsetClock method), 97
setAvailability() (dvbcss.clock.RangeCorrelatedClock

method), 106
setAvailability() (dvbcss.clock.SysClock method), 87
setAvailability() (dvbcss.clock.TunableClock method),

101
setCorrelationAndSpeed()

(dvbcss.clock.CorrelatedClock method),
93

setCorrelationAndSpeed() (dvbcss.clock.TunableClock
method), 102

setError() (dvbcss.clock.TunableClock method), 102
setMaxFreqError() (dvbcss.protocol.wc.WCMessage

method), 56
setParent() (dvbcss.clock.ClockBase method), 84
setParent() (dvbcss.clock.CorrelatedClock method), 94
setParent() (dvbcss.clock.OffsetClock method), 97
setParent() (dvbcss.clock.RangeCorrelatedClock

method), 106
setParent() (dvbcss.clock.SysClock method), 87
setParent() (dvbcss.clock.TunableClock method), 102

setPrecision() (dvbcss.protocol.wc.WCMessage method),
56

SetupData (class in dvbcss.protocol.ts), 30
SimpleClockTimelineSource (class in

dvbcss.protocol.server.ts), 50
SimpleTimelineSource (class in

dvbcss.protocol.server.ts), 49
sleep() (in module dvbcss.monotonic_time), 75
sleepFor() (in module dvbcss.task), 110
sleepUntil() (in module dvbcss.task), 110
slew (dvbcss.clock.TunableClock attribute), 102
speed (dvbcss.clock.ClockBase attribute), 84
speed (dvbcss.clock.CorrelatedClock attribute), 94
speed (dvbcss.clock.OffsetClock attribute), 97
speed (dvbcss.clock.RangeCorrelatedClock attribute),

106
speed (dvbcss.clock.SysClock attribute), 87
speed (dvbcss.clock.TunableClock attribute), 102
start() (dvbcss.protocol.client.wc.WallClockClient

method), 64
start() (dvbcss.protocol.server.wc.UdpRequestServer

method), 114
start() (dvbcss.protocol.server.wc.WallClockServer

method), 69
start_handler() (dvbcss.protocol.server.WSServerTool

method), 116
stop() (dvbcss.protocol.client.wc.WallClockClient

method), 64
stop() (dvbcss.protocol.server.wc.UdpRequestServer

method), 114
stop() (dvbcss.protocol.server.wc.WallClockServer

method), 69
stop() (dvbcss.task._Scheduler method), 120
SysClock (class in dvbcss.clock), 85

T
t1 (dvbcss.protocol.wc.Candidate attribute), 57
t2 (dvbcss.protocol.wc.Candidate attribute), 57
t3 (dvbcss.protocol.wc.Candidate attribute), 57
t4 (dvbcss.protocol.wc.Candidate attribute), 58
teUrl (dvbcss.protocol.cii.CII attribute), 13
tickRate (dvbcss.clock.ClockBase attribute), 84
tickRate (dvbcss.clock.CorrelatedClock attribute), 94
tickRate (dvbcss.clock.OffsetClock attribute), 97
tickRate (dvbcss.clock.RangeCorrelatedClock attribute),

107
tickRate (dvbcss.clock.SysClock attribute), 88
tickRate (dvbcss.clock.TunableClock attribute), 102
ticks (dvbcss.clock.ClockBase attribute), 84
ticks (dvbcss.clock.CorrelatedClock attribute), 94
ticks (dvbcss.clock.OffsetClock attribute), 97
ticks (dvbcss.clock.RangeCorrelatedClock attribute), 107
ticks (dvbcss.clock.SysClock attribute), 88
ticks (dvbcss.clock.TunableClock attribute), 102
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time() (in module dvbcss.monotonic_time), 75
timelineAvailable (dvbcss.protocol.client.ts.TSClientClockController

attribute), 40
TimelineOption (class in dvbcss.protocol.cii), 15
timelines (dvbcss.protocol.cii.CII attribute), 14
timelineSelector (dvbcss.protocol.cii.TimelineOption at-

tribute), 15
timelineSelector (dvbcss.protocol.ts.SetupData attribute),

31
timelineSelectorNeeded()

(dvbcss.protocol.server.ts.SimpleClockTimelineSource
method), 51

timelineSelectorNeeded()
(dvbcss.protocol.server.ts.SimpleTimelineSource
method), 50

timelineSelectorNeeded()
(dvbcss.protocol.server.ts.TimelineSource
method), 49

timelineSelectorNotNeeded()
(dvbcss.protocol.server.ts.SimpleClockTimelineSource
method), 51

timelineSelectorNotNeeded()
(dvbcss.protocol.server.ts.SimpleTimelineSource
method), 50

timelineSelectorNotNeeded()
(dvbcss.protocol.server.ts.TimelineSource
method), 49

TimelineSource (class in dvbcss.protocol.server.ts), 47
timelineSpeedMultiplier (dvbcss.protocol.ts.ControlTimestamp

attribute), 32
timeMicros() (in module dvbcss.monotonic_time), 75
timeNanos() (in module dvbcss.monotonic_time), 75
Timestamp (class in dvbcss.protocol.ts), 33
timestamp (dvbcss.protocol.ts.ControlTimestamp at-

tribute), 31
toOtherClockTicks() (dvbcss.clock.ClockBase method),

84
toOtherClockTicks() (dvbcss.clock.CorrelatedClock
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