

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pydvbcss 0.3-release documentation

pydvbcss

DVB protocols for synchronisation between TV Devices and Companion Screen Applications.

	Release:	0.3-release

	Licence:	Apache License v2.0 [http://www.apache.org/licenses/LICENSE-2.0].

	Latest Source:	https://github.com/BBC/pydvbcss/tree/master/

	How to install:	https://github.com/BBC/pydvbcss/tree/master/README.md

	Run the examples

	DVB CSS Protocol modules

	Clocks, Time and Scheduling modules

	Internal implementation details

	Module Index | Full Index

This collection of Python modules provides clients and servers for the network protocols defined in the
DVB “Companion Screens and Streams” (CSS) specification ETSI 103 286 part 2 [http://www.etsi.org/standards-search?search=103+286&page=1&title=1&keywords=1&ed=1&sortby=1].
There are also supporting classes that model clocks (e.g. to represent timelines) and their inter-relationships.

Use it to build clients and servers for each of the protocols (CSS-WC, CSS-CII and CSS-TS)
that mock or simulate the roles of TV Devices and Companion Screen Applications
for testing and prototyping.

To use this library you need to have a working understanding of these protocols and, of course, the Python programming language.

Getting started

	Install, following the instructions in the README [https://github.com/BBC/pydvbcss/tree/master/README.md].

	Try to Run the examples.

	Read the docs for the DVB CSS Protocol modules.

	Use the library in you own code

State of implementation

This library does not currently implement the CSS-TE or CSS-MRS protocols (from the DVB specification).

There are some unit tests but these mainly only cover the calculations done within clock objects and the packing and unpacking of JSON messages.

License and Contributing

pydvbcss is licensed as open source software under the terms of the
Apache License v2.0 [http://www.apache.org/licenses/LICENSE-2.0].

See the CONTRIBUTING and AUTHORS files for information on how to contribute and who has contributed to this library.

Contact and discuss

There is a pydvbcss google group [https://groups.google.com/forum/#!forum/pydvbcss] for announcements and discussion of this library.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

Run the examples

The code in the examples directory demonstrates how to create and control
servers and clients for all three protocols: CSS-CII, CSS-TS and CSS-WC.

	WallClockServer.py and WallClockClient.py

	CIIServer.py and CIIClient.py

	TSServer.py and TSClient.py

	TVDevice.py

There are instructions below on how to run the examples and see them interact with each other.

See the sources here: on github [https://github.com/BBC/pydvbcss/tree/master/examples]

WallClockServer.py and WallClockClient.py

Get started

The WallClockServer and WallClockClient examples use the library to
implement a simple server and client for the CSS-WC protocol.

First start the server, specifying the host and IP to listen on:

$ python examples/WallClockServer.py 127.0.0.1 6677

Leave it running in the background and start a client, telling it where to connect to the server:

$ python examples/WallClockClient.py 127.0.0.1 6677

Note

The wall clock protocol is connectionless (it uses UDP) This means the client will not report an error if
you enter the wrong IP address or port number.

Watch the “dispersion” values which indicate how
much margin for error there is in the client’s wall clock estimate. If the value is very large, this
means it is not receiving responses from the server.

How they work

WallClockServer.py [source] [https://github.com/BBC/pydvbcss/tree/master/examples/WallClockServer.py]

It works by instantiating a WallClockServer
object and providing that object with a clock object to be used
as the Wall Clock that is to be served.

At the command line you can override default options for
the ip address and port the server binds to; the
maximum frequency error it reports and whether it sends “follow-up” responses
to requests.

Use the --help command line option for usage information.

WallClockClient.py [source] [https://github.com/BBC/pydvbcss/tree/master/examples/WallClockClient.py]

It works by instantiating a WallClockClient
object and plugs into that object a
LowestDispersionCandidate algorithm
object that adjusts a TunableClock representing the Wall Clock.

At the command line
you must specify the host and port of the Wall Clock server. Default options
can be overridden for the IP address and port that the client listens on.

Use the --help command line option for usage information.

CIIServer.py and CIIClient.py

Get started

The CIIServer and CIIClient examples implement the CSS-CII
protocol, with the server sharing some pretend CII status information with
the client.

First start the server:

$ python examples/CIIServer.py

The server listens on 127.0.0.1 on port 7681 and accepts WebSocket connections to ws://<ip>:<port>/cii.

Leave it running in the background and connect using the client and see how
the CII data is pushed by the server whenever it changes:

$ python examples/CIIClient.py ws:/127.0.0.1:7681/cii

How they work

CIIServer.py [source] [https://github.com/BBC/pydvbcss/tree/master/examples/CIIServer.py]

It works by setting up a web server and the ws4py plug-in for cherrypy that provides
WebSockets support.
It then instantiates a CIIServer
and mounts it into the cherrypy server at the URL resource path “/cii”.

While the server is running, it pretends to be hopping between a few different broadcast
channels every 7 seconds, with a 2 second “transitioning” period on each hop.

This is an artificially simple example and does not provide values for most properties of
the CII message - such as a MRS URL, or any URLs for a WC or TS endpoints.

It does not do any media presentation, but just provides a CSS-CII server with some pretend data.

This server, by default, serves on port 7681 and provides a CSS-CII service at the
URL resource path /cii. It can therefore be connected to using
the WebSocket URL “ws://<host>:7681/cii” e.g. “ws://127.0.0.1:7681/cii”.
Command line options can be used to override these defaults and to reduce the amount of logging output.

Use the --help command line option for more detailed usage information.

CIIServer.py [source] [https://github.com/BBC/pydvbcss/tree/master/examples/CIIClient.py]

It works by instantiating a CIIClient
and attaching handler
functions to be notified of when connection and disconnection occurs
and of changes to the CII information being pushed from the server.

At the command line you must specify:

	the WebSocket URL of the CSS-CII server, in the form ws://<host>:<port>/<path>

Command line options can be used to reduce the amount of logging output.

Use the --help command line option for usage information.

TSServer.py and TSClient.py

Get started

The TServer and TSClient examples implement the CSS-TS protocol, with the
server pretending to have a few different timelines for a DVB broadcast service (where the content ID is a DVB URL).

First start the server:

$ python examples/TSServer.py

The server listens on 127.0.0.1 on port 7681 and accepts WebSocket connections to ws://<ip>:<port>/ts.
It also includes a wall clock server, also on 127.0.0.1 on port 6677.

Leave it running in the background and connect using the client and see
how the client is able to synchronise and periodically print an estimate of the timeline position (converted to units of seconds):

$ python examples/TSClient.py ws://127.0.0.1:7681/ts udp://127.0.0.1:6677 "dvb://" "urn:dvb:css:timeline:pts" 90000

Here we have told it to request a timeline for whatever content the server thinks it is showing provided that the content ID begins with “dvb://”.
Assuming that matches, then the timeline is to be a PTS timeline, which ticks at 90kHz (the standard rate of PTS in an MPEG transport stream).

How they work

TSServer.py [source] [https://github.com/BBC/pydvbcss/tree/master/examples/TSServer.py]

It works by setting up a web server and the ws4py plug-in for cherrypy that provides
WebSockets support.
It then instantiates a TSServer
and mounts it into the cherrypy server at the URL resource path “/ts”.
It also includes a wall clock server.

It does not play any media, but instead serves an imaginary set of timelines.

It creates clock objects to represent timelines and the wall clock.
SimpleClockTimelineSource objects are used to interface the clocks as
sources of timelines to the TS server object.

It has a hardcoded DVB URL as the content ID (displayed when you start it running)
and provides the following timelines:

	“urn:dvb:css:timeline:pts” ... a PTS timeline

	“urn:dvb:css:timelime:temi:1:1” ... a TEMI timeline ticking at 1kHz

	“urn:dvb:css:timelime:temi:1:2” ... the same, but it takes 10 seconds for the server to begin providing this timeline after a client first requests it

	“urn:pydvbcss:sporadic” ... a meaningless timeline whose availability toggles every 10 seconds.

The PTS and TEMI timelines both pause periodically and have their timing tweaked by a fraction of
a second. The “sporadic” timeline shows how the protocol supports having timelines appear (become
available) and disappear (become unavailable) while a client is connected.

By default, this server serves at 127.0.0.1 on port 7681 and provides a CSS-TS service at the
URL ws://127.0.0.1:7681/ts. It also provides a wall clock server bound to 0.0.0.0 on UDP port 6677.
Command line options can be used to override these defaults and to reduce the amount of logging output.

Use the --help command line option for more detailed usage information.

TSClient.py [source] [https://github.com/BBC/pydvbcss/tree/master/examples/TSClient.py]

It works by implementing both a wall clock client and a CSS-TS client. A
TSClientClockController object is instantiated
and provided with a CorrelatedClock object to represent
the synchronisation timeline. The controller adjusts the clock object to match
the timeline information coming from the server.

At the command line you must specify:

	the WebSocket URL of the CSS-TS server, in the form ws://<host>:<port>/<path>

	a udp://<host>:<port> format URL for the Wall Clock server

	The content ID stem and timeline selector to be used when requesting the timeline

	The tick rate of the timeline.

Default options can be overridden for the IP address and port that the Wall Clock client
binds to and to reduce the amount of logging output.

Use the --help command line option for usage information.

TVDevice.py

Get started

This is a very simple example of a server running all three protocols (CSS-WC, CSS-TS and CSS-CII).
It pretends to be showing a DVB broadcast service and able to provide a PTS or TEMI timeline for it.

First start the server:

$ python examples/TVDevice.py

While we leave it running in the background, we can try to interact with it using the various example
clients described above.

By default it provides a wall clock server on 127.0.0.1 port 6677

$ python examples/WallClockClient.py 127.0.0.1 6677

... and a CSS-CII server that can be reached at ws://127.0.0.1:7681/cii

$ python examples/CIIClient.py ws:/127.0.0.1:7681/cii

... and a CSS-TS server that can be reached at ws://127.0.0.1:7681/ts

$ python examples/TSClient.py ws://127.0.0.1:7681/ts udp://127.0.0.1:6677 "dvb://" "urn:dvb:css:timeline:temi:1:1" 1000

How it works

TVDevice.py [source] [https://github.com/BBC/pydvbcss/tree/master/examples/TVDevice.py]

This example works by setting up a web server and the ws4py plug-in for cherrypy that provides
WebSockets support.
It then instantiates a TSServer and
CIIServer and mounts it into the cherrypy server.
It also includes a wall clock server.

It does not play any media, but instead serves an imaginary set of timelines and
pretends to be presenting a broadcast service.

It creates clock objects to represent timelines and the wall clock.
SimpleClockTimelineSource objects are used to interface the clocks as
sources of timelines to the TS server object.

It has a hardcoded DVB URL as the content ID (displayed when you start it running)
and provides the following timelines:

	urn:dvb:css:timeline:pts ... a PTS timeline

	urn:dvb:css:timelime:temi:1:1 ... a TEMI timeline ticking at 1kHz

The PTS and TEMI timelines both start ticking up from zero the moment the server starts.

By default, this server serves at 127.0.0.1 on port 7681 and provides a CSS-CII service at the
URL ws://127.0.0.1:7681/cii and a CSS-TS service at the
URL ws://127.0.0.1:7681/ts. It also provides a wall clock server bound to 0.0.0.0 on UDP port 6677.
Command line options can be used to override these defaults and to reduce the amount of logging output.

Use the --help command line option for more detailed usage information.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

DVB CSS Protocol modules

Module: dvbcss.protocol

The dvbcss.protocol module contains classes to implement the CSS-CII, CSS-TS and CSS-WC protocols.
For each protocol there are objects to represent the messages that flow across the protocols and classes
that implement clients and servers for the protocols.

	CSS-CII protocol
	CSS-CII Protocol introduction

	CSS-CII Message objects

	CSS-CII Clients

	CSS-CII Servers

	CSS-TS protocol
	CSS-TS Protocol introduction

	CSS-TS Message objects

	CSS-TS Clients

	CSS-TS Servers

	CSS-WC protocol
	CSS-WC Protocol Introduction

	CSS-WC Message objects

	CSS-WC Clients

	CSS-WC Servers

See Protocol server implementation details for information on how the servers are implemented.

Common types and objects

Signalling that a property is to be omitted from a message

	
dvbcss.protocol.OMIT object[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol.py]

	When this object is assigned to an attribute of a protocol message object this
indicates that the corresponding property is not included in the JSON
representation of that message (it is omitted).

Here is an example. By default nearly all properties of a freshly created CII
message object are ‘OMIT’:

>>> from dvbcss.protocol.cii import CII
>>> from dvbcss.protocol import OMIT

>>> c=CII()
>>> print repr(c.contentId)
OMIT

>>> c.wcUrl = "udp://192.168.1.1:6677"
>>> print repr(c.wcUrl)
'udp://192.168.1.1:6677'

>>> c.wcUrl = OMIT
>>> print repr(c.wcUrl)
OMIT

Private data

Some protocol messages contain optional properties to carry private data.

Private data is encoded in message objects here as a list [http://docs.python.org/library/functions.html#list] of dict [http://docs.python.org/library/stdtypes.html#dict] objects
where each has a key “type” whose value is a URI.

Each dict can contain any other
keys and values you wish so long as they can be parsed by the python json [http://docs.python.org/library/json.html#module-json] module’s encoder.
For example:

example_private_data = [
 { "type" : "urn:bbc.co.uk:pid", "pid":"b00291843",
 "entity":"episode"
 },
 { "type" : "tag:bbc.co.uk/programmes/clips/link-url",
 "http://www.bbc.co.uk/programmes/b1290532/"
 }
]

Exceptions

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

CSS-CII protocol

	CSS-CII Protocol introduction
	Sequence of interaction

	CII message properties

	CSS-CII Message objects
	Examples

	Classes

	CSS-CII Clients
	Classes

	CSS-CII Servers
	Classes

This package provides objects for representing messages exchanged via the DVB CSS-CII protocol and for implementing clients and servers.

The CII protocol is a mechanism for sending state updates from server to client. The state of the server can be represented by a
CII message where every property is populated with a value.
The server can send complete CII messages or partial ones containing only the properties that have
changed value since the last message. The client must track these changes to maintain its own local up-to-date copy of the complete state.

Modules for using the CSS-CII protocol:

	dvbcss.protocol.cii : objects for representing and packing/unpacking the CSS-CII protocol messages.

	dvbcss.protocol.client.cii : implementations of a client for a CSS-CII connection.

	dvbcss.protocol.server.cii : implementations of a server for a CSS-CII connection.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-CII protocol

CSS-CII Protocol introduction

Here is a quick introduction to the CSS-CII protocol. For full details, refer to the
DVB specification ETSI 103 286 part 2 [http://www.etsi.org/standards-search?search=103+286&page=1&title=1&keywords=1&ed=1&sortby=1].

The CSS-CII protocol is for sharing the server’s (e.g. TV’s) current
“Content Identifier and other Information” (yes really!) with the client (e.g.
companion). It also includes the URL of the CSS-TS and
CSS-WC servers so the client knows where to find them.

CII comprises a set of defined properties. The server pushes state update
messages containing some or all properties (at minimum those that have changed).
How often these messages are pushed and which properties are included are
up to the server.

It is a WebSockets based protocol and messages are in JSON format.

	Sequence of interaction

	CII message properties

Sequence of interaction

The client is assumed to already know the WebSocket URL for the CSS-CII server
(for example: because the TV chooses to advertise it via a network service
discovery mechanism).

1. The client connects to the CSS-TS server. Either this is refused via an HTTP status code response,
or it is accepted.

2. The server immediately responds with a first CII state update message. This
contains (at minimum) all properties whose values are not null.

3. The server can re-send the CII state update message as often as it wishes.
At minimum it will do so when one or more of the properties have changed value.
The server will, at minimum, include the properties that have changed, but could
also include others in the message.

This protocol is a state update mechanism. The client is locally
mirroring the state of the TV by remembering the most recent values received
for each of the properties. When a message is received it updates that local
state and can react to any changes if it needs to.

Any messages sent by the client are ignored by the server.

CII message properties

Every message sent by the server is a CII message and consists of a single JSON
object with zero, one, more or all of the following properties:

	protocolVersion - currently “1.1” and must be included in the first message sent by the server after the client connects.

	contentId - a URI representing the ID of the content being presented by the server.
This will be a variant on a DVB URL (“dvb://”) for DVB broadcast services, or the URL of the MPD for MPEG DASH streams.

	contentIdStatus - whether the content Id is in its “final” form or whether it is a “partial” version until full information is available.
For example: a DVB broadcast content ID might not include some elements until the TV detects certain metadata in the broadcast stream which can take a few seconds.

	presentationStatus - Primarily, whether presentation of the content is “okay”, “transitioning” from one piece of content to the next, or in a “fault” condition.
This can be extended by suffixing space separated additional terms after the primary term.

	mrsUrl - The URL of an MRS server.

	tsUrl - The WebSockets URL of the CSS-TS server that a client should use if it wants to do Timeline Synchronisation.

	wcUrl - The UDP URL (“udp://<host>:<port”) of the CSS-WC server.

	teUrl - The WebSockets URL of the CSS-TE server that a client should use if it wants to receive Trigger Events.

	timelines - a list of zero, one or more timelines that the TV believes to be available for synchronising to.

	private - Extension mechanism to carry additional private data.

An example CII message:

{
 "protocolVersion" : "1.1",
 "mrsUrl" : "http://css.bbc.co.uk/dvb/233A/mrs",
 "contentId" : "dvb://233a.1004.1044;363a~20130218T0915Z--PT00H45M",
 "contentIdStatus" : "partial",
 "presentationStatus" : "okay",
 "wcUrl" : "udp://192.168.1.5:5800",
 "tsUrl" : "ws://192.168.1.8:5815",
 "timelines" : [
 {
 "timelineSelector" : "urn:dvb:css:timeline:temi:1:1",
 "timelineProperties" : {
 "unitsPerTick" : 5,
 "unitsPerSecond" : 10
 }
 }
]
}

Another example where the contentId has changed, due to a channel change. The
server has chosen to omit properties that have not changed since the previous
message:

{
 "contentId" : "dvb://233a.1004.1044;364f~20130218T1000Z--PT01H15M",
 "contentIdStatus" : "partial",
}

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-CII protocol

CSS-CII Message objects

Module: dvbcss.protocol.cii

	Examples

	Classes
	CII Message

	Timeline Option

A CII object represents a CII message sent from server to client via the CSS-CII protocol.

A TimelineOption object describes a timeline selector
and the tick rate of the timeline if that selector is used to request a
timeline from the CSS-TS server. It is carried in a list in the
timelines property of a CII message.

Examples

CII messages:

>>> from dvbcss.protocol.cii import CII
>>> from dvbcss.protocol import OMIT

>>> jsonCiiMessage = \"""\
... { "protocolVersion":"1.1",
... "contentId":"dvb://1234.5678.01ab",
... "contentIdStatus":"partial"
... }
... \"""

>>> cii = CII.unpack(jsonCiiMessage)
>>> cii.contentId
'dvb://1234.5678.01ab'

>>> print cii.mrsUrl
OMIT

>>> cii.protocolVersion = OMIT
>>> cii.pack()
'{contentId":"dvb://1234.5678.01ab","contentIdStatus":"partial"}'

TimelineOption within CII messages:

>>> from dvbcss.protocol.cii import CII, TimelineOption

>>> t1 = TimelineOption(timelineSelector="urn:dvb:css:timeline:pts", unitsPerTick=1, unitsPerSecond=90000)
>>> t2 = TimelineOption(timelineSelector="urn:dvb:css:timeline:temi:1:1", unitsPerTick=1, unitsPerSecond=1000)

>>> print t1.timelineSelector, t1.unitsPerTick, t1.unitsPerSecond, t1.accuracy
urn:dvb:css:timeline:pts 1 90000 OMIT

>>> cii = CII(presentationStatus="final", timelines=[t1, t2])
>>> cii.pack()
'{ "presentationStatus": "final",
 "timelines": [{ "timelineProperties": {"unitsPerSecond": 90000, "unitsPerTick": 1},
 "timelineSelector": "urn:dvb:css:timeline:pts"
 },
 { "timelineProperties": {"unitsPerSecond": 1000, "unitsPerTick": 1},
 "timelineSelector": "urn:dvb:css:timeline:temi:1:1"
 }
]
 }'

Classes

CII Message

	
class dvbcss.protocol.cii.CII(**kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Object representing a CII message used in the CSS-CII protocol.

Initialisation takes the following parameters, all of which are optional
keyword arguments that default to OMIT :

	Parameters:	
	protocolVersion (OMIT or “1.1”) – The protocol version being used by the server.

	mrsUrl (OMIT or str [http://docs.python.org/library/functions.html#str]) – The URL of an MRS server known to the server.

	contentId (OMIT or str [http://docs.python.org/library/functions.html#str]) – Content identifier URI.

	contentIdStatus (OMIT or “partial” or “final”) – Content identifier status.

	presentationStatus (OMIT or list [http://docs.python.org/library/functions.html#list] of str [http://docs.python.org/library/functions.html#str]) – Presentation status as a list [http://docs.python.org/library/functions.html#list] of one or more strings, e.g. ["okay"]

	wcUrl (OMIT or str [http://docs.python.org/library/functions.html#str]) – CSS-WC server endpoint URL in the form “udp://<host>:<port>”

	tsUrl (OMIT or str [http://docs.python.org/library/functions.html#str]) – CSS-TS server endpoint WebSocket URL

	teUrl (OMIT or str [http://docs.python.org/library/functions.html#str]) – CSS-TE server endpoint WebSocket URL

	timelines (OMIT or list [http://docs.python.org/library/functions.html#list] of TimelineOption) – List of timeline options.

	private (OMIT or Signalling that a property is to be omitted from a message) – Private data.

The attributes of the object have the same name as the CII message properties:

	protocolVersion

	mrsUrl

	contentId

	contentIdStatus

	presentationStatus

	wcUrl

	tsUrl

	teUrl

	timelines

	private

Properties are accessed as attributes of this object using the same name as their JSON property name.

Converting to and from JSON representation is performed using the pack() method and unpack() class method.
Properties set to equal OMIT will be omitted when the message
is packed to a JSON representation.

	
protocolVersion = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or “1.1”) The protocol version being used by the server.

	
mrsUrl = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or str [http://docs.python.org/library/functions.html#str]) The URL of an MRS server known to the server

	
contentId = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or str [http://docs.python.org/library/functions.html#str]) Content identifier (URL)

	
contentIdStatus = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or “partial” or “final”) Content identifier status

	
presentationStatus = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or list [http://docs.python.org/library/functions.html#list] of str [http://docs.python.org/library/functions.html#str]) Presentation status, e.g. ["okay"]

	
wcUrl = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or str [http://docs.python.org/library/functions.html#str]) CSS-WC server endpoint URL in form “udp://<host>:<port>”

	
tsUrl = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or str [http://docs.python.org/library/functions.html#str]) CSS-TS server endpoint WebSocket URL

	
teUrl = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or str [http://docs.python.org/library/functions.html#str]) CSS-TE server endpoint WebSocket URL

	
timelines = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(read/write OMIT or list`(:class:`TimelineOption)) Timeline options

	
private = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(OMIT or list [http://docs.python.org/library/functions.html#list] of dict [http://docs.python.org/library/stdtypes.html#dict])
Private data as a list [http://docs.python.org/library/functions.html#list] of dict [http://docs.python.org/library/stdtypes.html#dict] objects that can be converted
to JSON by json.dumps() [http://docs.python.org/library/json.html#json.dumps].
Each dict must contain at least a key called “type” with a URI string as its value.

	
classmethod allProperties()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Returns a list of all property names, whether OMITted or not

	
combine(diff)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Copies this CII object, and updates that copy with any properties (that are not omitted) in the CII object supplied as the diff argument.
The updated copy is then returned.

	Parameters:	diff – (CII) A CII object whose properties (that are not omitted) will be used to update the copy before it is returned.

new = old.combine(diff) is equivalent to the following operations:

new = old.copy()
new.update(diff)

	
copy()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	

	Returns:	a copy of this CII object. The copy is a deep copy.

	
definedProperties()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Returns a list of the names of properties whose value is not OMIT

	
classmethod diff(old, new)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	

	Parameters:	
	old – (CII) A CII object

	new – (CII) A CII object

	Returns:	CII object representing changes from old to new CII objects.

If in the new CII object a property is OMITted, it property won’t appear in the returned CII object that represents the changes.

If in the old CII object a property is OMITted, but it has a non-omitted value in the new object, then it is assumed
to be a change.

	
pack()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	

	Returns:	string containing JSON representation of this message.

	Throws ValueError:

		if there are values for properties that are not permitted.

	
classmethod unpack(msg)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Convert JSON string representation of this message encoded as a CII object.

	Throws ValueError:

		if not possible.

	
update(diff)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Updates this CII object with the values of any properties (that are not omitted) in the CII object provided as the diff argument.

Note that this changes this object.

	Parameters:	diff – (CII) A CII object whose properties (that are not omitted) will be used to update this CII object.

Timeline Option

	
class dvbcss.protocol.cii.TimelineOption(timelineSelector, unitsPerTick, unitsPerSecond, accuracy=OMIT, private=OMIT)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Object representing a CSS-CII Timeline Option used in the “timelines” property of a CII message.

Initialisation takes the following parameters:

	Parameters:	
	timelineSelector (str [http://docs.python.org/library/functions.html#str]) – The timeline selector

	unitsPerTick (int [http://docs.python.org/library/functions.html#int]) – Denominator of tick rate (in ticks per second) for the corresponding timeline

	unitsPerSecond (int [http://docs.python.org/library/functions.html#int]) – Numerator of tick rate (in ticks per second) for the corresponding timeline

	accuracy (OMIT or float [http://docs.python.org/library/functions.html#float]) – Optional indication of timeline accuracy

	private (OMIT or Signalling that a property is to be omitted from a message) – Optional private data.

It represents a timeline selector and the tick rate of the timeline
if that selector is used to request a timeline from the CSS-TS server.
It is carried in a list [http://docs.python.org/library/functions.html#list] in the timelines property of a CII message.

The tick rate of the timeline is expressed by the unitsPerTick and unitsPerSecond values.
The tick rate in ticks per second is equal to unitsPerTick / unitsPerSecond.

Accuracy and private data are optional, but the other fields are mandatory.

The attributes of the object have the same name as the relevant CII message properties:

	timelineSelector

	unitsPerTick

	unitsPerSecond

	accuracy

	private

Converting to and from JSON representation is performed using the pack() method and unpack() class method.
Properties set to equal OMIT will be omitted when the message
is packed to a JSON representation.

	
timelineSelector = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(str [http://docs.python.org/library/functions.html#str]) The timeline selector

	
unitsPerTick = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(int [http://docs.python.org/library/functions.html#int]) The units per tick of the timeline

	
unitsPerSecond = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(int [http://docs.python.org/library/functions.html#int]) The units per second of the timeline

	
accuracy = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(OMIT or float [http://docs.python.org/library/functions.html#float]) The accuracy of the timeline with respect to the content in seconds.

	
private = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	(OMIT or list [http://docs.python.org/library/functions.html#list] of dict [http://docs.python.org/library/stdtypes.html#dict])
Private data as a list [http://docs.python.org/library/functions.html#list] of dict [http://docs.python.org/library/stdtypes.html#dict] objects that can be converted to JSON by json.dumps() [http://docs.python.org/library/json.html#json.dumps].
Each dict must contain at least a key called “type” with a URI string as its value.

	
classmethod decode(struct)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Internal method used by a CII message object when unpacking to JSON format.

	
classmethod encode(item)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Internal class method used by a CII message object when packing to JSON format.

	
pack()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	

	Returns:	string containing JSON presentation of this message.

	
classmethod unpack(msg)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/cii.py]

	Convert JSON string representation of this message encoded as a TimelineOption object.

	Throws ValueError:

		if not possible.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-CII protocol

CSS-CII Clients

Module: dvbcss.protocol.client.cii

	Classes
	CIIClient

	CIIClientConnection

Classes

CIIClient

CIIClientConnection

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-CII protocol

CSS-CII Servers

Module: dvbcss.protocol.server.cii

	Classes
	CIIServer - CII Server handler for cherrypy

Classes

CIIServer - CII Server handler for cherrypy

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

CSS-TS protocol

	CSS-TS Protocol introduction
	Sequence of interaction

	Determining timeline selection and availability

	What does a timestamp convey?

	CSS-TS Message objects
	Examples

	+/- infinity

	Classes

	CSS-TS Clients
	Classes

	CSS-TS Servers
	Classes

	Functions

This package provides objects for representing messages exchanged via the DVB CSS-TS protocol and for implementing clients and servers.

The TS protocol is a mechanism for a server to share timeline position and playback speed with a client. In effect it enables a client to synchronise its
understanding of the progress of media presentation with that of a server, in terms of a particular timeline.

The client initially sends a SetupData message to specify what timeline it wants to synchronise in terms of.
The server then periodically sends ControlTimestamp messages to inform the client of the state of presentation timing.
The client can also send AptEptLpt (Actual, Earliest and Latest Presentation Timestamp) messages to the server
to inform it of its playback timing and range of playback timings it can achieve.

The client implementation in this library can control a CorrelatedClock, synchronising it to the timeline.
The server implementation in this library uses CorrelatedClock objects as its source of timelines that it
is to share with clients.

Modules for using the CSS-TS protocol:

	dvbcss.protocol.ts : objects for representing and packing/unpacking the CSS-TS protocol messages.

	dvbcss.protocol.client.ts : implementation of a client for a CSS-TS connection.

	dvbcss.protocol.server.ts : implementation of a server for a CSS-TS connection.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-TS protocol

CSS-TS Protocol introduction

Here is a quick introduction to the CSS-TS protocol. For full details, refer to the DVB specification
ETSI 103 286 part 2 [http://www.etsi.org/standards-search?search=103+286&page=1&title=1&keywords=1&ed=1&sortby=1].

The CSS-TS protocol is for Timeline Synchronisation. Via this protocol,
the server (e.g. TV) pushes timestamps to the client (e.g. companion) to keep
it up-to-date on the progress of a particular timeline. The timeline to use
is requested by the client at the beginning of the interaction.

A client can also report its own timing and what range of timings it can
cope with. This allows the client to negotiate a mutually achievable
timing with the server, although the server is under no obligation and can
choose to ignore this information.

It is a WebSockets based protocol and messages are in JSON format.

	Sequence of interaction

	Determining timeline selection and availability

	What does a timestamp convey?

Sequence of interaction

The client is assumed to already know the WebSocket URL for the CSS-TS server
(usually from the information received via the CSS-CII protocol).

1. The client connects to the CSS-TS server. Either this is refused via an HTTP status code response,
or it is accepted.

2. The client then immediately sends an initial SetupData message to request the
timeline to synchronise with.

3. The server then starts sending back ControlTimestamp messages that update the
client as to the state of that timeline. This state says either that the timeline is currently
unavailable, or that it is available, and here is how to calculate the timeline position from
the wall clock position.The server sends as frequently or infrequently as it likes, but will at least send
them if there is a meaningful change in the timeline.

4. The client can, optionally, send its own AptEptLpt messages to inform the server
of what it is doing, and the range of different timings it can achieve for its media (e.g.
what is the earliest and latest timings it can achieve). However this is purely informative.
A server is not obliged to do anything with this information.

Determining timeline selection and availability

The SetupData message conveys to the CSS-TS server details of what timeline the client
wants to synchronise to.

The CSS-TS server determines, at any given moment, if a timeline is available by checking if:

	the stem matches the current content identifier for what is being presented at the server
(meaning that the stem matches the left hand most subset of the content id);

	and the timeline selector identifies a timeline that exists for the content being presented at the server.

While the above is true, the timeline is “available”. While it is not true, it is “unavailable”.
The CSS-TS connection is kept open irrespective of timeline availability. The server indicates
changes in availability via the ControlTimestamp messages it sends.

Example SetupData message; requesting a PTS timeline for
a particular DVB broadcast channel, but not being specific about which event (programme in the EPG):

{
 "contentIdStem" : "dvb://233a.1004.1044",
 "timelineSelector" : "urn:dvb:css:timeline:pts"
}

What does a timestamp convey?

It represents a relationship between Wall Clock time and the timeline of the content being presented by the TV Device.
It is sometimes referred to as a (point of) correlation between the wall clock and the timeline.

This relationship can be visualised as a line that maps from wall clock time (on one axis) to timeline time (on the other axis).
The (content-time, wall-clock-time) correlation is a point on the line. The timelineSpeedMultiplier represents the slope.
The tick rates of each timeline are the units (the scale of each axis).

The CSS-TS server sends ControlTimestamp messages to clients, and clients can, optionally, send back AptEptLpt
messages.

A ControlTimestamp can also tell a client if a timeline is unavailable by having null values for the contentTime
and timelineSpeedMultiplier properties. Non-null values mean the timeline is available.

AptEptLpt messages enables a client to inform a server of what time it is presenting at (the “actual” part of the timestamp)
and also to indicate the earliest and latest times it could present. It is, in effect, three correlations bundled into one message,
to represent each of these three aspects.
Earliest and Latest correlations are allowed to have -infinity and +infinity for the wall clock time to indicate that the client
has no limits on how early, or late, it can present.

An example ControlTimestamp indicating the timeline is unavailable:

{
 "contentTime" : null,
 "wallClockTime" : "116012000000",
 "timelineSpeedMultiplier" : null
}

An example ControlTimestamp providing a correlation
for an available timeline:

{
 "contentTime" : "834188",
 "wallClockTime" : "116012000000",
 "timelineSpeedMultiplier" : 1.0
}

An example of an AptEptLpt message, indicating
the current presentation timing being used by the client; a limit on how early
it can present; but no limit on how long it can delay (buffer):

{
 "actual" : {
 "contentTime" : "834190",
 "wallClockTime" : "115992000000"
 },
 "earliest" : {
 "contentTime" : "834190",
 "wallClockTime" : "115984000000"
 },
 "latest" : {
 "contentTime" : "834190",
 "wallClockTime" : "plusinfinity"
 }
}

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-TS protocol

CSS-TS Message objects

Module: dvbcss.protocol.ts

	Examples

	+/- infinity

	Classes
	setup-data

	Control Timestamp

	AptEptLpt (Actual, Earliest and Latest Presentation Timestamp)

	Timestamp

A SetupData object represents a setup-data message sent by a client to a server
immediately after opening a CSS-TS protocol connection.

A ControlTimestamp object represents a Control Timestamp message sent by the server
to the client.

A AptEptLpt object represents an Actual, Earliest and Latest Presentation Timestamp
message that may be sent by a client to the server.

The Timestamp objects are used in the above message objects to represent the
relationship between wall clock time and content (timeline) time.

Examples

SetupData examples:

>>> from dvbcss.protocol.ts import SetupData
>>> from dvbcss.protocol import OMIT

>>> s = SetupData(timelineSelector="urn:dvb:css:timeline:pts", ciStem="dvb://1004")
>>> s.pack()
'{"timelineSelector": "urn:dvb:css:timeline:pts", "contentIdStem": "dvb://1004"}'

>>> jsonMessage = \"""\
... { "timelineSelector":"urn:dvb:css:timeline:temi:1:1",
... "contentIdStem":""
... }
... \"""
>>> SetupData.unpack(jsonMessage)
SetupData(ciStem="", timelineSelector="urn:dvb:css:timeline:temi:1:1", private=OMIT)

ControlTimestamp examples:

>>> from dvbcss.protocol.ts import ControlTimestamp, Timestamp

>>> t = Timestamp(contentTime=12345, wallClockTime=900028432)
>>> ct = ControlTimestamp(timestamp=t, timelineSpeedMultiplier=1)
>>> ct.pack()
'{"timelineSpeedMultiplier": 1.0, "wallClockTime": "900028432", "contentTime": "12345"}'

>>> jsonMessage = \"""\
... { "contentTime" : "1003847",
... "wallClockTime" : "348957623498576",
... "timelineSpeedMultiplier" : 2.0
... }
... \"""
>>> c = ControlTimestamp.unpack(jsonMessage)
>>> c.timestamp.contentTime
1003847
>>> c.timestamp.wallClockTime
348957623498576
>>> c.timelineSpeedMultiplier
2.0

Actual, Earliest and Latest Presentation Timestamp examples:

>>> from dvbcss.protocol.ts import AptEptLpt, Timestamp

>>> te = Timestamp(contentTime=123465, wallClockTime=float("-inf"))
>>> tl = Timestamp(contentTime=123465, wallClockTime=float("+inf"))
>>> ael = AptEptLpt(earliest=te, latest=tl)
>>> ael.pack()
'{"earliest": {"wallClockTime": "minusinfinity", "contentTime": "123465"}, "latest": {"wallClockTime": "plusinfinity", "contentTime": "123465"}}'

>>> jsonMessage = \"""\
... { "earliest" : { "contentTime" : "1000", "wallClockTime": "10059237" },
... "latest" : { "contentTime" : "1000", "wallClockTime": "19284782" },
... "actual" : { "contentTime" : "1005", "wallClockTime": "10947820" }
... }
... \"""
>>> ael=AptEptLpt.unpack(jsonMessage)
>>> ael.actual.contentTime
1005
>>> ael.actual.wallClockTime
10947820

+/- infinity

For certain timestamp messages it is permissible to convey a time value that is either plus or minus infinity.
Use the python float [http://docs.python.org/library/functions.html#float] to express these values as follows:

>>> float("+inf")
inf

>>> float("-inf")
-inf

Classes

setup-data

	
class dvbcss.protocol.ts.SetupData(contentIdStem, timelineSelector, private=OMIT)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	Object representing a CSS-TS Setup-Data message.

This carries a content identifier stem and a timeline selector string, and is used, in effect,
to request the timeline to be synchronised to via the CSS-TS protocol.

Initialisation takes the following parameters:

	Parameters:	
	contentIdStem (str [http://docs.python.org/library/functions.html#str]) – The content identifier stem.

	timelineSelector (str [http://docs.python.org/library/functions.html#str]) – The timeline selector

	private (OMIT or Signalling that a property is to be omitted from a message) – Optional private data.

The attributes of the object have the same name as the SetupData message properties:

	contentIdStem

	timelineSelector

	private

Converting to and from JSON representation is performed using the pack() method and unpack() class method.
Properties set to equal OMIT will be omitted when the message
is packed to a JSON representation.

	
contentIdStem[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write str [http://docs.python.org/library/functions.html#str]) The stem (subset starting from the LHS) of a content identifier

	
timelineSelector[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write str [http://docs.python.org/library/functions.html#str]) The timeline selector

	
private = OMIT[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write OMIT or Signalling that a property is to be omitted from a message) Optional private data.

	
pack()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	

	Returns:	string containing JSON representation of this message.

	Throws ValueError:

		if there are values for properties that are not permitted.

	
classmethod unpack(msg)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	Convert JSON string representation of this message encoded as a SetupData object.

	Throws ValueError:

		if not possible.

Control Timestamp

	
class dvbcss.protocol.ts.ControlTimestamp(timestamp, timelineSpeedMultiplier)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	Object representing a CSS-TS Control Timestamp message.

Initialisation takes the following parameters:

	Parameters:	
	timestamp (Timestamp) – carries the contentTime and wallClockTime properties of the Control Timestamp

	timelineSpeedMultiplier (float [http://docs.python.org/library/functions.html#float] or None [http://docs.python.org/library/constants.html#None]) – the timeline speed multiplier

The attributes of the object have the following relationship to the message properties:

	timestamp

	timelineSpeedMultiplier

Converting to and from JSON representation is performed using the pack() method and unpack() class method.

	
timestamp[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write Timestamp) Timestamp object representing the contentTime and wallClockTime parts of the timestamp)

	
timelineSpeedMultiplier[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write float [http://docs.python.org/library/functions.html#float] or None [http://docs.python.org/library/constants.html#None]) Timeline speed. For example: 1 = normal, 0 = pause, -0.5 = half speed reverse. Use None only when the Control Timestamp is supposed to indicate that the timeline is unavailable.

	
pack()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	

	Returns:	string containing JSON representation of this message.

	Throws ValueError:

		if there are values for properties that are not permitted.

	
classmethod unpack(msg)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	Convert JSON string representation of this message encoded as a ControlTimestamp object.

	Throws ValueError:

		if not possible.

AptEptLpt (Actual, Earliest and Latest Presentation Timestamp)

	
class dvbcss.protocol.ts.AptEptLpt(actual=OMIT, earliest=Timestamp(contentTime=0, wallClockTime=-inf), latest=Timestamp(contentTime=0, wallClockTime=inf))[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	Object representing a CSS-TS Actual, Earliest and Latest Presentation Timestamp message.

Initialisation takes the following parameters:

	Parameters:	
	actual (OMIT or Timestamp) – Optional timestamp representing the actual presentation timing

	earliest (OMIT or Timestamp) – Timestamp representing the earliest possible presentation timing

	latest (OMIT or Timestamp) – Timestamp representing the latest possible presentation timing

For the actual presentation timestamp, the contentTime and wallClockTime must both be non-null integer values.

For the earliest presentation timestamp, the contentTime must be a non-null integer. wallClockTime can be a
non-null integer or plus infinity

For the latest presentation timestamp, the contentTime must be a non-null integer. wallClockTime can be a
non-null integer or minus infinity

The attributes of the object have the same names as the Actual, Earliest and Latest presentation timestamp message properties:

	actual

	earliest

	latest

Converting to and from JSON representation is performed using the pack() method and unpack() class method.
If values of properties do not meet the requirements described above, then pack() will raise ValueError exceptions.

	
actual[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write OMIT or Timestamp) Actual presentation timestamp

	
earliest[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write Timestamp) Earliest presentation timestamp. The wallClockTime property must be an int [http://docs.python.org/library/functions.html#int] or float("+inf"). It must not be float("-inf").

	
latest[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write Timestamp) Latest presentation timestamp. The wallClockTime property must be an int [http://docs.python.org/library/functions.html#int] or float("-inf"). It must not be float("+inf").

	
pack()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	

	Returns:	string containing JSON representation of this message.

	Throws ValueError:

		if there are values for properties that are not permitted.

	
classmethod unpack(msg)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	Convert JSON string representation of this message encoded as a AptEptLpt object.

	Throws ValueError:

		if not possible.

Timestamp

This object does not directly represent a message, but is instead used by ControlTimestamp and AptEptLpt
as a representation of a correlation between a content time and a wall clock time.

	
class dvbcss.protocol.ts.Timestamp(contentTime, wallClockTime)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	Object representing a Timestamp part(s) of a ControlTimestamp or AptEptLpt object.

Initialisation takes the following parameters:

	Parameters:	
	contentTime (None [http://docs.python.org/library/constants.html#None] or int [http://docs.python.org/library/functions.html#int]) – The content time (time on timeline) part of a timestamp

	wallClockTime (int [http://docs.python.org/library/functions.html#int] or +/- infinity float [http://docs.python.org/library/functions.html#float] (“+inf”) or float [http://docs.python.org/library/functions.html#float] (“-inf”)) – The wall clock time part of a timestamp

The values for contentTime and wallClockTime are allowed to be arbitrarily large precision integers because they are carried as a string
in the JSON representation.

The attributes of the object have the same name as the corresponding message properties:

	contentTime

	wallClockTime

Converting to and from JSON representation is performed using the pack() method and unpack() class method.

	
contentTime[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write None [http://docs.python.org/library/constants.html#None] or large int [http://docs.python.org/library/functions.html#int]) The content time part of a timestamp

	
wallClockTime[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/ts.py]

	(read/write large int [http://docs.python.org/library/functions.html#int] or float("+inf") or float("-inf")) The wall clock time part of a timestamp

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-TS protocol

CSS-TS Clients

Module: dvbcss.protocol.client.ts

	Classes
	TSClientConnection

	TSClientClockController

Classes

TSClientConnection

TSClientClockController

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-TS protocol

CSS-TS Servers

Module: dvbcss.protocol.server.ts

	Classes
	TSServer

	TimelineSource

	SimpleTimelineSource

	SimpleClockTimelineSource

	Functions
	ciMatchesStem

	isControlTimestampChanged

Classes

TSServer

TimelineSource

SimpleTimelineSource

SimpleClockTimelineSource

Functions

ciMatchesStem

isControlTimestampChanged

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

CSS-WC protocol

	CSS-WC Protocol Introduction
	Sequence of interaction

	Synchronising the wall clock

	Message format

	CSS-WC Message objects
	Example usage

	Classes

	CSS-WC Clients
	Algorithms

	Functions

	Classes

	CSS-WC Servers
	Classes

This package provides objects for representing messages exchanged via the DVB CSS-WC protocol and for implementing clients and servers.

The WC protocol is a simple UDP request response-protocol that enables simple
clock synchronisation [http://en.wikipedia.org/wiki/Network_Time_Protocol#Clock_synchronization_algorithm] algorithms to
be used to establish a common wall clock between a server and client.

There is a WallClockServer class providing a self contained Wall Clock server.
The WallClockClient is designed to allow different algorithms to be plugged in for acting on
the results of the request-response interaction to adjust a local clock object to match the Wall Clock of the
server.

Modules for using the CSS-WC protocol:

	dvbcss.protocol.wc : objects for representing and packing/unpacking the protocol messages.

	dvbcss.protocol.client.wc : implementation of a client for a CSS-WC connection.

	dvbcss.protocol.client.wc.algorithm : algorithms to be used with a CSS-WC client.

	dvbcss.protocol.server.wc : implementation of a server for a CSS-WC connection.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-WC protocol

CSS-WC Protocol Introduction

Here is a quick introduction to the CSS-WC protocol. For full details, refer to the
DVB specification ETSI 103 286 part 2 [http://www.etsi.org/standards-search?search=103+286&page=1&title=1&keywords=1&ed=1&sortby=1].

The CSS-WC protocol is for establishing Wall clock synchronisation - meaning
that there is a common synchronised sense of time (a “wall clock”) between the
server (e.g. TV) and client (e.g. companion). This common wall clock is used
in the CSS-TS protocol to make it immune to network delays.

The client uses the information carried in the protocol to estimate the server
wall clock and attempt to compensate for network latency. This is a
connectionless UDP protocol similar to NTP’s client-server mode of
operation, but much simplified and not intended to set the system real-time
clock.

	Sequence of interaction

	Synchronising the wall clock

	Message format

Sequence of interaction

The client is assumed to already know the host and port number of the CSS-WC
server (usually from the information received via the
CSS-CII protocol).

	The client sends a Wall Clock protocol “request” message to the server.

	The server sends back a Wall Clock protocol “response” message to the client.

3. If the server is able to more accurately measure when it sent a message
after it has done so, then it can optionally send a “follow-up response” with
this information.

The client repeats this process as often as it needs to.

Synchronising the wall clock

The client notes the time at which the request is sent and the response received,
and by the server including the times at which it received the request and
sent its response. Using this information the client can estimate the difference
between the time of its clock and that of the server. It can also calculate
an error bound on this (known as dispersion):

[image: _images/wc-request-response.png]

Estimated offset = ((t3 + t2) - (t4 + t1)) / 2

The DVB specification (part 2) [http://www.etsi.org/standards-search?search=103+286&page=1&title=1&keywords=1&ed=1&sortby=1]
contains an annex that goes into more detail on the
theory of how to calculate dispersion and how a client can use this
as part of a simple algorithm to align its wall clock.

Message format

Requests and responses both have the same fixed 32 byte binary message format.
A WCMessage carries the following fields:

	Protocol version identifier

	Message type (request / response / response-before-follow-up / follow-up)

	The precision of the server’s wall clock

	The maximum frequency error of the server’s wall clock

	Timevalues (in NTP 64-bit time format, comprising a 32bit word carrying the
number of nanoseconds and another 32bit word containing the number of seconds)
	Originate timevalue: when the client sent the request.

	Receive timevalue: when the server received the request.

	Transmit timevalue: when the server sent the response.

The precision, max freq error, receive timevalue and transmit timevalue fields only
have meaning in a response from a server. Their values do not matter in requests.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-WC protocol

CSS-WC Message objects

Module: dvbcss.protocol.wc

	Example usage

	Classes
	WCMessage

	Candidate

The WCMessage class represents a CSS-WC protocol message.

The Candidate class represents a measurement “candidate”
for use by a Wall Clock Client algorithm and is calculated from a WCMessage
that represents a Wall Clock protocol response message received from a server.

Example usage

Creating a request message at a Wall Clock Client:

>>> from dvbcss.protocol.wc import WCMessage
>>> import time

>>> t1 = time.time() * 1000000000

>>> msg = WCMessage(msgtype=WCMessage.TYPE_REQUEST, precision=-10, maxFreqError=256*50, originateNanos=t1, receiveNanos=0, transmitNanos=0)
>>> packedMessage = msg.pack()
>>> packedMessage
"\x00\x00\xf6\x00\x00\x002\x00TvH'3\xf5\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"

Processing a received response message at a Wall Clock Client:

>>> from dvbcss.protocol.wc import Candidate

>>> t4 = <nanoseconds-at-which-message-was-received>
>>> msg = WCMessage.unpack(receivedData)
>>> msg.msgtype
1
>>> c = Candidate(msg, t4)
>>> c.rtt
459734573

Classes

WCMessage

	
class dvbcss.protocol.wc.WCMessage(msgtype, precision, maxFreqError, originateNanos, receiveNanos, transmitNanos, originalOriginate=None)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Create object representing a CSS-WC wall clock request or response message.

Initialisation takes the following parameters:

	Parameters:	
	msgtype (int [http://docs.python.org/library/functions.html#int]) – Type of message. One of: TYPE_REQUEST, TYPE_RESPONSE, TYPE_RESPONSE_WITH_FOLLOWUP and TYPE_FOLLOWUP

	precision (int [http://docs.python.org/library/functions.html#int]) – Precision (of the server’s wall clock) encoded in log base 2 seconds between -128 and +127 inclusive.

	maxFreqError (int [http://docs.python.org/library/functions.html#int]) – Maximum frequency error (of the server’s wall clock) in units of 1/256ths ppm.

	originateNanos (int [http://docs.python.org/library/functions.html#int]) – Originate timevalue in integer number of nanoseconds

	receiveNanos (int [http://docs.python.org/library/functions.html#int]) – Receive timevalue in integer number of nanoseconds

	transmitNanos (int [http://docs.python.org/library/functions.html#int]) – Transmit timevalue in integer number of nanoseconds

	originalOriginate (None [http://docs.python.org/library/constants.html#None] or (int [http://docs.python.org/library/functions.html#int], int [http://docs.python.org/library/functions.html#int])) – Optional original encoding of the originate timevalue as (seconds, nanos). Overrides originateNanos if not None.

The originalOriginate parameter, if not None, overrides the originateNanos parameter.

Convert to and from a string containing the binary encoding of this message
using the pack() method and unpack() class method.

	
msgtype[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read/write int [http://docs.python.org/library/functions.html#int]) Type of message. 0=request, 1=response, 2=response-with-followup, 3=followup

	
precision[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read/write int [http://docs.python.org/library/functions.html#int]) Precision encoded in log base 2 seconds between -128 and +127 inclusive. For example: -10 encodes a precision value of roughly 0.001 seconds.

	
maxFreqError[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read/write int [http://docs.python.org/library/functions.html#int]) Maximum frequency error in units of 1/256ths ppm. For example: 12800 encodes a max freq error of 50ppm.

	
originateNanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read/write int [http://docs.python.org/library/functions.html#int]) Originate timevalue in integer number of nanoseconds

	
receiveNanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read/write int [http://docs.python.org/library/functions.html#int]) Receive timevalue in integer number of nanosecond

	
transmitNanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read/write int [http://docs.python.org/library/functions.html#int]) Transmit timevalue in integer number of nanosecond

	
originalOriginate[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read/write None [http://docs.python.org/library/constants.html#None] or (int [http://docs.python.org/library/functions.html#int], int [http://docs.python.org/library/functions.html#int])) Optional original encoding of the originate timevalue as (seconds, nanos). Overrides originateNanos when the message is packed if the value is not None.

	
TYPE_FOLLOWUP = 3[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Constant: Message type 3 “follow-up response”

	
TYPE_REQUEST = 0[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Constant: Message type 0 “request”

	
TYPE_RESPONSE = 1[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Constant: Message type 1 “response with no follow-up”

	
TYPE_RESPONSE_WITH_FOLLOWUP = 2[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Constant: Message type 2 “response to be followed by a follow-up response”

	
copy()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Duplicate this wallclock message object

	
classmethod encodePrecision(precisionSecs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Convert a precision value in seconds to the format used in these messages

	
getMaxFreqError()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Get frequency error in ppm

	
getPrecision()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Get precision value in fractions of a second

	
pack()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Pack wall clock message into binary representation.

	Returns:	String containing the wall clock message in final bitstream form.

	
setMaxFreqError(maxFreqErrorPpm)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Set freq error given a freq error represented as ppm

	
setPrecision(precisionSecs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Set precision value given a precision represented as factions of a second

	
classmethod unpack(data)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Class method that takes a string containing a wall clock message and unpacks
it to a WCMessage object.

	Parameters:	data (str [http://docs.python.org/library/functions.html#str]) – String containing binary representation of a Wall Clock message as received from a client or server.

	Returns:	WCMessage object representing the wall clock message.

Candidate

	
class dvbcss.protocol.wc.Candidate(msg, nanosRx)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	This object represents a measurement “candidate” to be fed into a Wall Clock Client’s
algorithm. It is calculated from a WCMessage received as a response from a
Wall Clock server.

Initialisation takes the following parameters:

	Parameters:	
	msg (WCMessage) – Response message received from server

	nanosRx (int [http://docs.python.org/library/functions.html#int]) – the time, in nanoseconds, at which it was received (from the server)

Pass in a received WallClockMessage that is a response and this will represent the
candidate data derived from that request-response interaction.

Populates properties of this objects with the candidate information.
t1, t2, t3 and t4 represent the times of message sending
and receiving as shown below:

[image: _images/wc-request-response.png]
It also calculates and provides, as properties, the round-trip time (rtt)
and clock offset estimate (offset) based on this measurement.

By default the data is preserved in nanoseconds. However you may use the toTicks()
method to create a new version of the Candidate object using units of ticks matching
a clock object you provide.

The exceptions are precision which is measured in seconds, and
maximum frequency error which is measured in ppm

	
t1 = msg.originateNanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) The time “t1” at which the request was sent in the request-response measurement (nanoseconds, or clock ticks)

	
t2 = msg.receiveNanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) The time “t2” at which the request was received in the request-response measurement (nanoseconds, or clock ticks)

	
t3 = msg.transmitNanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) The time “t3” at which the response was sent in the request-response measurement (nanoseconds, or clock ticks)

	
t4 = nanosRx[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) The time “t4” at which the response was received in the request-response measurement (nanoseconds, or clock ticks)

	
offset = ((t3+t2)-(t4+t1))/2[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) Server<->client clock offset (nanoseconds, or clock ticks)

	
rtt = (t4-t1)-(t3-t2)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) Round trip time (nanoseconds, or clock ticks)

	
isNanos = True[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only bool [http://docs.python.org/library/functions.html#bool]) True if this candidate object is in units of nanoseconds for t1, t2, t3, t4, offset and rtt

	
precision = msg.getPrecision()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) The precision reported by the server in its response (units of factions of a second)

	
maxFreqError = msg.getMaxFreqError()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only) The maximum frequency error reported by the server in its response (units of ppm)

	
msg = WCMessage[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	(read only WCMessage) The response message from which this candidate was derived

	
toTicks(clock)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/wc.py]

	Returns a new Candidate object the same as this one but whose measurements have been converted to match the timescale of a clock.

t1, t2, t3, t4, rtt and offset of the returned object are converted to units of ticks matching the clock.
But precision and maxFreqError remain unchanged.

	Parameters:	clock (dvbcss.clock) – Clock whose nanosToTicks() function will be used to create the new candidate object

	Returns:	a copy of this candidate where the units have been converted to ‘ticks’ according to the tick rate of the supplied clock.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-WC protocol

CSS-WC Clients

Modules: dvbcss.protocol.client.wc | dvbcss.protocol.client.wc.algorithm

	Algorithms

	Functions
	Filter and Prediction algorithm creator

	Classes
	WallClockClient

	Dispersion algorithm

	Most recent measurement algorithm

	Filter and Prediction composable algorithms
	Filters

	Predictors

	General helper classes
	Dispersion calculator

	Candidate quality calculator

Algorithms

Functions

Filter and Prediction algorithm creator

Classes

WallClockClient

Dispersion algorithm

Most recent measurement algorithm

Filter and Prediction composable algorithms

Filters

Predictors

General helper classes

Dispersion calculator

Candidate quality calculator

This function is used internally by the WallClockClient class.
.. autofunction:: dvbcss.protocol.client.wc.algorithm.calcQuality

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	DVB CSS Protocol modules

 	CSS-WC protocol

CSS-WC Servers

	Classes
	WallClockServer

Modules: dvbcss.protocol.server.wc

	Classes
	WallClockServer

Classes

WallClockServer

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

Clocks, Time and Scheduling modules

This library contains a range of tools for dealing with timing, clocks, and timelines
and scheduling code to run at set times.

Contents:

	Montonic time functions
	Example use

	Operating system implementation details

	Functions

	Synthesised clocks (dvbcss.clock)
	Introduction

	Limitations on tick resolution (precision)

	Timers and Sleep functions

	Usage examples

	Functions

	Classes

	Task scheduling for clocks
	Introduction

	Example

	Functions

The dvbcss.monotonic_time module provides a time()
and sleep() functions equivalent to those in the
standard python library time [http://docs.python.org/library/time.html#module-time] module. However these are guaranteeed to
be monotonic and use the highest precision time sourcecs available (depending
on the host operating system).

The dvbcss.clock module provides high level abstractions for representing clocks
and timelines and the relationships between them. The
client and server implementations
for the DVB-CSS protocols use these objects to represent clocks and timelines.

The:mod:Task module provides sleep and task scheduling functions that work
with clock objects and allow code to be called when a clock
reaches a particular tick value, even if that clock is adjusted in some way
after the task is scheduled.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	Clocks, Time and Scheduling modules

Montonic time functions

Module: dvbcss.monotonic_time

	Example use

	Operating system implementation details
	Windows

	Mac OS X

	Linux

	Functions
	time(), timeMicros() and timeNanos()

	sleep()

This module implements operating system specific access to high resolution
monotonic system timers for the following operating systems:

	Windows 2000 Pro or later

	Linux

	Mac OS X

It implements a time() function and sleep() function that work
the same as the time.time() [http://docs.python.org/library/time.html#time.time] and time.sleep() [http://docs.python.org/library/time.html#time.sleep] functions in the
python standard library.

It also adds a timeNanos() and timeMicros() variants that report
time in units of nanoseconds or microseconds instead of seconds.

See operating system specific implementation details below to understand
the limitations of the functions provided in this module.

Note

For all supported operating systems, the sleep() function is not guaranteed
to use the same underlying timer as the time() and therefore should be
considered inaccurate.

Example use

>>> import dvbcss.monotonic_time as monotonic_time
>>> monotonic_time.time()
4695.582637038
>>> monotonic_time.timeNanos()
4700164952506L
>>> monotonic_time.timeMicros()
4703471405L
>>> monotonic_time.sleep(0.5) # sleep 1/2 second

Operating system implementation details

The precision and accuracy of the clocks and sleep functions are dependent on
the host operating system and hardware. This module can therefore provide no
performance guarantees.

Windows

Windows NT 5.0 (Windows 2000 Professional) or later is supported, including
the cygwin environment.

The time() function and its variants are based on the
QueryPerformanceCounter() [http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904.aspx]
high resolution timer system call.
This clock is guaranteed to be monotonic and have 1 microsecond precision or better.

The sleep() function is based on the
CreateWaitableTimer() and SetWaitableTimer() [http://msdn.microsoft.com/en-us/library/windows/desktop/ms687008.aspx]
system calls.

Note that the sleep() function for Windows is not guaranteed to be accurate
because it is not possible to create blocking (non polling) delays
based on the clock source used. However it should have significantly
higher precision than the standard 15ms windows timers and will be fine
for short delays.

Mac OS X

The time() function and its variants are based on the
mach_absolute_time() [https://developer.apple.com/library/mac/qa/qa1398/_index.html]
system call.

The clock is guaranteed to be monotonic. Apple provides no guarantees on precision,
however in practice it is usually based on hardware tick counters in the processor or
support chips and so is extremely high precision (microseconds or better).

The sleep() function is based on the
nanosleep() [https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/nanosleep.2.html]
system call. It is unclear whether this uses the same underlying counter as mach_absolute_time().

Linux

The time() function and its variants are based on the
clock_gettime() [http://linux.die.net/man/3/clock_gettime]
system call requesting CLOCK_MONOTONIC.

The sleep() function is based on the
nanosleep() [http://linux.die.net/man/3/nanosleep]
system call. It is unclear whether this uses the same underlying counter as CLOCK_MONOTONIC.

Functions

time(), timeMicros() and timeNanos()

	
dvbcss.monotonic_time.time()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/monotonic_time.py]

	Return monotonic time in seconds and fractions of seconds (as a float). The precision is operating system dependent.

	
dvbcss.monotonic_time.timeMicros()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/monotonic_time.py]

	Return monotonic time in integer microseconds. The precision is operating system dependent.

	
dvbcss.monotonic_time.timeNanos()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/monotonic_time.py]

	Return monotonic time in integer nanoseconds. The precision is operating system dependent.

sleep()

	
dvbcss.monotonic_time.sleep(t)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/monotonic_time.py]

	Sleep for specified number of second and fractions of seconds (as a float). The precision is operating system dependent.

	Throws TimeoutError:

		if the underlying system call used to sleep reported a timeout (OS dependent behaviour)

	Throws InterruptedException:

		if a signal or other interruption is received while sleeping (OS dependent behaviour)

Note

For all supported operating systems, the sleep() function is not guaranteed
to use the same underlying timer as the time() and therefore should be
considered inaccurate.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	Clocks, Time and Scheduling modules

Synthesised clocks (dvbcss.clock)

Module: dvbcss.clock

	Introduction

	Limitations on tick resolution (precision)

	Timers and Sleep functions

	Usage examples
	Simple hierarchies of clocks

	Clock speed adjustment

	Translating tick values between clocks

	Implementing new clocks

	Functions
	measurePrecision - estimate measurement precision of a clock

	Classes
	ClockBase - base class for clocks

	SysClock - Clock based on time module

	CorrelatedClock - Clock correlated to another clock

	TunableClock - Clock with dynamically adjustable frequency and tick offset

	RangeCorrelatedClock - Clock correlated to another clock

The dvbcss.clock module provides software synthesised clock objects that can be chained together into dependent hierarchies.
Use in conjunction with dvbcss.task to sleep and run code at set times on these clocks.

Introduction

The classes in this module implement software synthesised clocks
from which you can query a current time value.
A clock counts in whole numbers of ticks (unlike the standard library time.time() [http://docs.python.org/library/time.html#time.time] function which
counts in seconds and fractions of a second) and has a tick rate (expresed in ticks per second).

To use clocks as timers or to schedule code to run later, you must use them with the functions of the dvbcss.task module.

To use clocks begin with a root clock that is based on a underlying timing source.
The following root clocks are provided:

	SysClock is an root clock based on the dvbcss.monotonic_time.time() function as the underlying time source

Other dependent clocks can then be created that have the underlying clock as their parent.
and further dependent clocks can be created with those dependents as their parents, creating
chains of clocks, each based on their parent and leading back to an underlying clock.
The following dependent clocks are provided:

	CorrelatedClock is a fixed tick rate clock where you define the point of correlation between it and its parent.

	TunableClock is a clock that can have its tick count tweaked and its frequency slewed on the fly.

	RangleCorrelatedClock is a clock where the relationship to the parent is determined from two points of correlation.

Dependent clocks can have a different tick rate to their parent and count their ticks from a
different starting point.

Dependent clocks allow their relationship to its parent clock
to be changed dynamically - e.g. the absolute value, or the rate at which
the clock ticks. If your code needs to be notified of such a change, it
can bind itself as a dependent to that clock.

The base ClockBase class defines the set of methods common to
all clocks (both underlying and dependent)

Limitations on tick resolution (precision)

The Clock objects here do not run a thread that counts individual ticks. Instead, to determine the current tick value
they query the parent clock for its current tick value and then calculate what the tick value should be.

A clock is therefore limited in the precision and resolution of its tick value by its parents. SysClock,
for example, is limited by the resolution of the underlying time source provided to it by dvbcss.monotonic_time
module’s dvbcss.monotonic_time.time() function. And this will be operating system dependent. SysClock also outputs
ticks as integer values.

If a parent of a clock only reports whole number (integer) tick values then that also limits the resolution of any
clocks that depend on it. For example, a clock that counts in integer ticks only at 25 ticks per second will cause a
clock descended from it, with a tick rate of 100 ticks per second, to report tick values that increment 4 ticks
at a time ... or worse if a parent of both has an even lower tick rate.

With the clocks provided by this module, only SysClock limits itself to integer numbers of ticks.
CorrelatedClock and TunableClock are capable of fractional numbers of ticks provided that the
parameters provided to them (e.g. the tickRate) are passed as floating point values (this will force python to
do the maths in floating point instead of integer maths).

Timers and Sleep functions

Use the functions of the dvbcss.task in conjunction with Clock objects
to create code that sleeps, or which triggers callbacks, based on time as
measured by these clocks.

Usage examples

Simple hierarchies of clocks

Here is a simple example where a clock represents a timeline and
another represents a timeline related to the first by a correlation:

from dvbcss.clock import SysClock
from dvbcss.clock import CorrelatedClock

create a clock based on dvbcss.monotonic_time.time() that ticks in milliseconds
sysClock = SysClock(tickRate=1000)

create a clock to represent a timeline
baseTimeline = CorrelatedClock(parentClock=sysClock, tickRate=25, correlation=(0,0))

create a clock representing another timeline, where time zero corresponds to time 100
on the parent timeline
subTimeline = CorrelatedClock(parentClock=baseTimeline, tickRate=25, correlation=(100,0)

At some point later in time during the program, we query the values of all the clocks,
confirming that the sub timeline is always 100 ticks ahead of the base timeline.

def printTimes():
 sys = sysClock.ticks()
 base = baseTimeline.ticks()
 sub = subTimeline.ticks()
 print "SysClock ticks = %d", sys
 print "Base timeline ticks = %d", base
 print "Sub timeline ticks = %d", sub

>>> printTimes()
SysClock ticks = 20000
Base timeline ticks = 500
Sub timeline ticks = 600

Note that in these examples, for clarity, the tick count on the sysClock is artificially low. It would likely be a much larger value.

We then change the correlation for the base timeline, declaring tick 25 on its baseline to correspond to tick 0 on its parent timeline,
and both the base timeline and the sub timeline reflect this:

>>> baseTimeline.correlation = (0,25)
>>> printTimes()
SysClock ticks = 30000
Base timeline ticks = 775
Sub timeline ticks = 875

Clock speed adjustment

All clocks have a speed property. Normally this is 1.0. Some clock classes support changing this value. This scales the rate at which
the clock ticks relative to its parent. For example, 0.5 corresponds to half speed; 2.0 = double speed, 0 = frozen and -1.0 = reverse.

Clocks will take speed into account when returning their current tick position or converting it to or from the tick value of a parent clock. However
it does not alter the tickRate property. A child clock will similarly ignore the speed property of a parent clock. In this way, the speed property can be
used to tweak the speed of time, or to emulate speed control (fast forward, rewind, pause) for a media timeline.

Here is an example where we create 3 clocks in a chain and all tick initially at 100 ticks per second:

>>> import time
>>> baseClock = Sysclock(tickRate=100)
>>> clock1 = TunableClock(parent=baseClock, tickRate=100)
>>> clock2 = TunableClock(parent=clock1, tickRate=100)

We confirm that both clock1 and its child - clock2 - tick at 100 ticks per second:

>>> print clock1.ticks; time.sleep(1.0); print clock1.ticks
5023
5123
>>> print clock2.ticks; time.sleep(1.0); print clock2.ticks
2150
2250

If we change the tick rate of clock1 this affects clock1, but its child - clock2 - continues to tick at 100 ticks every second:

>>> clock1.tickRate = 200
>>> print clock1.ticks; time.sleep(1.0); print clock1.ticks
5440
5640
>>> print clock2.ticks; time.sleep(1.0); print clock2.ticks
4103
4203

But if we instead change the speed multiplier of clock1 then this not only affects the ticking rate of clock1 but also of its child - clock2:

>>> clock1.tickRate = 100
>>> clock1.speed = 2.0
>>> print clock1.ticks; time.sleep(1.0); print clock1.ticks
5740
5940
>>> print clock2.ticks; time.sleep(1.0); print clock2.ticks
4603
4803

Translating tick values between clocks

The clock classes provide mechanisms to translate a tick value from one clock to a tick value of another clock such that it still
represents the same moment in time. So long as both clocks share a common ancestor clock, the conversion will be possible.

toParentTicks() and fromParentTicks() converts tick values for a clock to/from its parent clock.
toOtherClockTicks() will convert a tick value for this clock to the corresponding tick value for any other clock
with a common ancestor to this one.

from dvbcss.clock import SysClock
from dvbcss.clock import CorrelatedClock

create a clock based on dvbcss.monotonic_time.time() that ticks in milliseconds
sysClock = SysClock(tickRate=1000)

+------------+
.-- | mediaClock |
+----------+ +-----------+ <--' +------------+
| sysClock | <-- | wallClock |
+----------+ +-----------+ <--. +-----------------+
'-- | otherMediaClock |
+-----------------+

wallClock = CorrelatedClock(parentClock=sysClock, tickRate=1000000000, correlation=(0,0))
mediaClock = CorrelatedClock(parentClock=wallClock, tickRate=25, correlation=(500021256, 0))
otherMediaClock = CorrelatedClock(parentClock=wallClock, tickRate=30, correlation=(21093757, 0))

calculate wall clock time 'w' corresponding to a mediaClock time 1582:
t = 1582
w = mediaClock.toParentTicks(t)
print "When MediaClock ticks =", t, " wall clock ticks =", w

calculate mediaClock time 'm' corresponding to wall clock time 1920395
w = 1920395
m = mediaClock.fromParentTicks(w)
print "When wall clock ticks =", w, " media clock ticks =", m

calculate other media clock time corresponding to media clock time 2248
t = 2248
o = mediaClock.toOtherClockTicks(otherMediaClock, t)
print "When MediaClock ticks =", t, " other media clock ticks =", o

Implementing new clocks

Implement a new clock class by subclassing ClockBase and implementing the stub methods.

For example, here is a clock that is the same as its parent (same tick rate) except that its
current tick value differs by a fixed offset.

from dvbcss.clock import ClockBase

class FixedTicksOffsetClock(ClockBase):

 def __init__(self, parent, offset):
 super(FixedTicksOffsetClock,self).__init__()
 self._parent = parent
 self._offset = offset

 def calcWhen(self, ticksWhen):
 return self._parent.calcWhen(ticksWhen - self._offset)

 def fromParentTicks(self, ticks):
 return ticks + self._offset

 def getParent(self):
 return self._parent

 @property
 def tickRate(self):
 return self._parent.tickRate

 @property
 def ticks(self)
 return self._parent.ticks + self._offset

 def toParentTicks(self, ticks):
 return ticks - self._offset

In use:

>>> f = FixedTicksOffsetClock(parentClock, 100)
>>> print parentClock.ticks, f.ticks
216 316

When doing this, you must decide whether to allow the speed to be adjusted. If you do, then it must be taken into account in the calculations for the methods:
calcWhen(), fromParentTicks() and toParentTicks().

Functions

measurePrecision - estimate measurement precision of a clock

	
dvbcss.clock.measurePrecision(clock, sampleSize=10000)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Do a very rough experiment to work out the precision of the provided clock.

Works by empirically looking for the smallest observable difference in the tick count.

	Parameters:	
	clock – (:class:dvbcss.clock.ClockBase) Clock to measure

	sampleSize – (int) Number of iterations (sample size) to estimate the precision over

	Returns:	(float) estimate of clock measurement precision (in seconds)

Classes

ClockBase - base class for clocks

	
class dvbcss.clock.ClockBase(**kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Base class for all clock classes.

By default, adjusting tickRate and speed are not permitted unless a subclass overrides and implements a property setter.

	
bind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Bind for notification if this clock changes.

	Parameters:	dependent – When this clock changes, the notify() method of this dependent will be called, passing a single argument that is this clock.

	
calcWhen(ticksWhen)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	Return:	“when” in terms of the underlying clock behind the root clock implementation (e.g. monotonic_time.time() in the case of SysClock)

This is a stub for this method. Sub-classes should implement it.

	
fromParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	This is a stub for this method. Sub-classes should implement it.

Method to convert from a tick value for this clock’s parent to the equivalent tick value (representing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	Returns:	The specified tick value for the parent clock converted to the timescale of this clock.

	Throws StopIteration:

		if this clock has no parent

	
getEffectiveSpeed()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root clock.

	
getParent()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	This is a stub for this method. Sub-classes should implement it.

	Returns:	ClockBase representing the immediate parent of this clock, or None if it is a root clock.

	
nanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick rate (but ignoring the speed property).

	
nanosToTicks(nanos)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring the speed property).

	Parameters:	nanos – nanoseconds value

	Returns:	number of ticks equivalent to the supplied nanosecond value

	
notify(cause)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying timing source.

	Parameters:	cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

	
speed[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read/write float [http://docs.python.org/library/functions.html#float]) The speed at which the clock is running.
Does not change the reported tickRate value, but will affect how ticks are calculated
from parent clock ticks. Default = 1.0 = normal tick rate.

	
tickRate[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only)The tick rate (in ticks per second) of this clock.

This is a stub for this method. Sub-classes should implement it.

	
ticks[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count for this clock.

This is a stub for this method. Sub-classes should implement it.

	
toOtherClockTicks(otherClock, ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

	Parameters:	
	otherClock – A clock object representing another clock.

	ticks – A time (tick value) for this clock

	Returns:	The tick value of the otherClock that represents the same moment in time.

	Throws NoCommonClock:

		if there is no common ancestor clock (meaning it is not possible to convert

	
toParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	This is a stub for this method. Sub-classes should implement it.

Method to convert from a tick value for this clock to the equivalent tick value (representing the same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	Returns:	The specified tick value of this clock converted to the timescale of the parent clock.

	Throws StopIteration:

		if this clock has no parent

	
unbind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Unbind from notification if this clock changes.

	Parameters:	dependent – The dependent to unbind from receiving notifications.

SysClock - Clock based on time module

	
class dvbcss.clock.SysClock(tickRate=1000000, **kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	A clock based directly on the standard library timer function monotonic_time.time().
Returns integer ticks when its ticks property is queried.

The default tick rate is 1 million ticks per second, but a different tick rate can be chosen during initialisation.

It is not permitted to change the tickRate or speed property of this clock because it directly represents a system clock.

	Parameters:	tickRate – (int) tick rate for this clock (in ticks per second)

	
bind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Bind for notification if this clock changes.

	Parameters:	dependent – When this clock changes, the notify() method of this dependent will be called, passing a single argument that is this clock.

	
calcWhen(ticksWhen)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	Return:	“when” in terms of the underlying clock behind the root clock implementation (e.g. monotonic_time.time() in the case of SysClock)

(Documentation inherited from ClockBase)

	
fromParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock’s parent to the equivalent tick value (representing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value for the parent clock converted to the timescale of this clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
getEffectiveSpeed()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root clock.

	
getParent()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	returns:	ClockBase representing the immediate parent of this clock, or None if it is a root clock.

(Documentation inherited from ClockBase)

	
nanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick rate (but ignoring the speed property).

	
nanosToTicks(nanos)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring the speed property).

	Parameters:	nanos – nanoseconds value

	Returns:	number of ticks equivalent to the supplied nanosecond value

	
notify(cause)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying timing source.

	Parameters:	cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

	
speed[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read/write float [http://docs.python.org/library/functions.html#float]) The speed at which the clock is running.
Does not change the reported tickRate value, but will affect how ticks are calculated
from parent clock ticks. Default = 1.0 = normal tick rate.

	
tickRate[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only)The tick rate (in ticks per second) of this clock.

(Documentation inherited from ClockBase)

	
ticks[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

	
toOtherClockTicks(otherClock, ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

	Parameters:	
	otherClock – A clock object representing another clock.

	ticks – A time (tick value) for this clock

	Returns:	The tick value of the otherClock that represents the same moment in time.

	Throws NoCommonClock:

		if there is no common ancestor clock (meaning it is not possible to convert

	
toParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock to the equivalent tick value (representing the same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value of this clock converted to the timescale of the parent clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
unbind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Unbind from notification if this clock changes.

	Parameters:	dependent – The dependent to unbind from receiving notifications.

CorrelatedClock - Clock correlated to another clock

	
class dvbcss.clock.CorrelatedClock(parentClock, tickRate, correlation=(0, 0), **kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	A clock locked to the tick count of the parent clock by a correlation and frequency setting.

Correlation is a tuple (parentTicks, selfTicks)

When the parent clock ticks property has the value parentTicks, the ticks property of this clock
shall have the value selfTicks.

This relationship can be illustrated as follows:

[image: _images/correlated-clock.png]
You can alter the correlation and tickRate and speed of this clock dynamically. Changes to tickRate and speed
will not shift the point of correlation. This means that a change in tickRate or speed will probably cause the
current tick value of the clock to jump. The amount it jumps by will be proportional to the distance the current
time is from the point of correlation:

[image: _images/correlated-clock-speed-change-issue.png]
If you want a speed change to only affect the ticks from a particular point (e.g. the current tick value) onwards
then you must re-base the correlation. There is a function provided to do that in some circumstances:

c = CorrelatedClock(parentClock=parent, tickRate=1000, correlation=(50,78))

 ... time passes ...

now freeze the clock AT ITS CURRENT TICK VALUE

c.rebaseCorrelationAtTicks(c.ticks)
c.speed = 0

now resume the clock but at half speed, but again without the tick value jumping
c.correlation = (parent.ticks, c.ticks)
c.speed = 0.5

Note

The maths to calculate and convert tick values will be performed, by default, as integer maths
unless the parameters controlling the clock (tickRate etc) are floating point, or the ticks property
of the parent clock supplies floating point values.

	Parameters:	
	parentClock – The parent clock for this clock.

	tickRate – (int) tick rate for this clock (in ticks per second)

	correlation – (tuple(int, int)) The intial correlation for this clock. A tuple (parent tick value, this clock tick value)

	
bind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Bind for notification if this clock changes.

	Parameters:	dependent – When this clock changes, the notify() method of this dependent will be called, passing a single argument that is this clock.

	
calcWhen(ticksWhen)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	Return:	“when” in terms of the underlying clock behind the root clock implementation (e.g. monotonic_time.time() in the case of SysClock)

(Documentation inherited from ClockBase)

	
correlation[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Read or change the correlation tuple (parentTicks, selfTicks) of this clock to its parent clock.

Assign a new tuple (parentTicks, selfTicks) to change the correlation.
This value must be a tuple, not a list.

	
fromParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock’s parent to the equivalent tick value (representing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value for the parent clock converted to the timescale of this clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
getEffectiveSpeed()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root clock.

	
getParent()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	returns:	ClockBase representing the immediate parent of this clock, or None if it is a root clock.

(Documentation inherited from ClockBase)

	
nanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick rate (but ignoring the speed property).

	
nanosToTicks(nanos)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring the speed property).

	Parameters:	nanos – nanoseconds value

	Returns:	number of ticks equivalent to the supplied nanosecond value

	
notify(cause)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying timing source.

	Parameters:	cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

	
rebaseCorrelationAtTicks(tickValue)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Changes the correlation property to an equivalent correlation (that does not change the timing relationship between
parent clock and this clock) where the tick value for this clock is the provided tick value.

	
speed[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
	(read/write float [http://docs.python.org/library/functions.html#float]) The speed at which the clock is running.

	Does not change the reported tickRate value, but will affect how ticks are calculated
from parent clock ticks. Default = 1.0 = normal tick rate.

(Documentation inherited from ClockBase)

	
tickRate[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Read or change the tick rate (in ticks per second) of this clock. The value read is not affected by the value of the speed property.

	
ticks[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

	
toOtherClockTicks(otherClock, ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

	Parameters:	
	otherClock – A clock object representing another clock.

	ticks – A time (tick value) for this clock

	Returns:	The tick value of the otherClock that represents the same moment in time.

	Throws NoCommonClock:

		if there is no common ancestor clock (meaning it is not possible to convert

	
toParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock to the equivalent tick value (representing the same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value of this clock converted to the timescale of the parent clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
unbind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Unbind from notification if this clock changes.

	Parameters:	dependent – The dependent to unbind from receiving notifications.

TunableClock - Clock with dynamically adjustable frequency and tick offset

	
class dvbcss.clock.TunableClock(parentClock, tickRate, ticks=0, **kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	A clock whose tick offset and speed can be adjusted on the fly.
Must be based on another clock.

Advancement of time of this clock is based on the tick count and rates reported by
the supplied parent clock.

If you adjust the tickRate or speed, then the change is applied going forward from the moment it is made.
E.g. if you are observing the rate of increase of the ticks property, then doubling the speed wil cause
the ticks property to start increasing faster but will not cause it to suddenly jump value.

Note

The maths to calculate and convert tick values will be performed, by default, as integer maths
unless the parameters controlling the clock (tickRate etc) are floating point, or the ticks property
of the parent clock supplies floating point values.

	Parameters:	
	parentClock – The parent clock for this clock.

	tickRate – The tick rate (ticks per second) for this clock.

	ticks – The starting tick value for this clock.

The specified starting tick value applies from the moment this object is initialised.

	
adjustTicks(offset)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Change the tick count of this clock by the amount specified.

	
bind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Bind for notification if this clock changes.

	Parameters:	dependent – When this clock changes, the notify() method of this dependent will be called, passing a single argument that is this clock.

	
calcWhen(ticksWhen)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	Return:	“when” in terms of the underlying clock behind the root clock implementation (e.g. monotonic_time.time() in the case of SysClock)

(Documentation inherited from ClockBase)

	
fromParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock’s parent to the equivalent tick value (representing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value for the parent clock converted to the timescale of this clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
getEffectiveSpeed()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root clock.

	
getParent()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	returns:	ClockBase representing the immediate parent of this clock, or None if it is a root clock.

(Documentation inherited from ClockBase)

	
nanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick rate (but ignoring the speed property).

	
nanosToTicks(nanos)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring the speed property).

	Parameters:	nanos – nanoseconds value

	Returns:	number of ticks equivalent to the supplied nanosecond value

	
notify(cause)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying timing source.

	Parameters:	cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

	
slew[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	This is an alternative method of querying or adjusting the speed property.

The slew (in ticks per second) currently applied to this clock.

Setting this property will set the speed property to correspond to the specified slew.

For example: for a clock with tickRate of 100, then a slew of -25 corresponds to a speed of 0.75

	
speed[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
	(read/write float [http://docs.python.org/library/functions.html#float]) The speed at which the clock is running.

	Does not change the reported tickRate value, but will affect how ticks are calculated
from parent clock ticks. Default = 1.0 = normal tick rate.

(Documentation inherited from ClockBase)

	
tickRate[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Read or change the tick rate (in ticks per second) of this clock. The value read is not affected by the value of the speed property.

	
ticks[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

	
toOtherClockTicks(otherClock, ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

	Parameters:	
	otherClock – A clock object representing another clock.

	ticks – A time (tick value) for this clock

	Returns:	The tick value of the otherClock that represents the same moment in time.

	Throws NoCommonClock:

		if there is no common ancestor clock (meaning it is not possible to convert

	
toParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock to the equivalent tick value (representing the same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value of this clock converted to the timescale of the parent clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
unbind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Unbind from notification if this clock changes.

	Parameters:	dependent – The dependent to unbind from receiving notifications.

RangeCorrelatedClock - Clock correlated to another clock

	
class dvbcss.clock.RangeCorrelatedClock(parentClock, tickRate, correlation1, correlation2, **kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	A clock locked to the tick count of the parent clock by two different points of correlation.

Each correlation is a tuple (parentTicks, selfTicks)

This relationship can be illustrated as follows:

[image: _images/range-correlated-clock.png]
The tickRate you set is purely advisory - it is the tickRate reported to clocks that use this clock as the parent,
and may differ from what the reality of the two correlations represents!

	Parameters:	
	parentClock – The parent clock for this clock.

	tickRate – The advisory tick rate (ticks per second) for this clock.

	correlation1 – (tuple(int, int)) The first point of correlation for this clock. A tuple (parent tick value, this clock tick value)

	correlation2 – (tuple(int, int)) The second point of correlation for this clock. A tuple (parent tick value, this clock tick value)

	
bind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Bind for notification if this clock changes.

	Parameters:	dependent – When this clock changes, the notify() method of this dependent will be called, passing a single argument that is this clock.

	
calcWhen(ticksWhen)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	Return:	“when” in terms of the underlying clock behind the root clock implementation (e.g. monotonic_time.time() in the case of SysClock)

(Documentation inherited from ClockBase)

	
correlation1[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Read or change the first correlation tuple (parentTicks, selfTicks) of this clock to its parent clock.

Assign a new tuple (parentTicks, selfTicks) to change the correlation.
This value must be a tuple, not a list.

	
correlation2[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Read or change the first correlation tuple (parentTicks, selfTicks) of this clock to its parent clock.

Assign a new tuple (parentTicks, selfTicks) to change the correlation.
This value must be a tuple, not a list.

	
fromParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock’s parent to the equivalent tick value (representing the same point in time) for this clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value for the parent clock converted to the timescale of this clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
getEffectiveSpeed()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Returns the ‘effective speed’ of this clock.

This is equal to multiplying together the speed properties of this clock and all of the parents up to the root clock.

	
getParent()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	

	returns:	ClockBase representing the immediate parent of this clock, or None if it is a root clock.

(Documentation inherited from ClockBase)

	
nanos[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count of this clock, but converted to units of nanoseconds, based on the current tick rate (but ignoring the speed property).

	
nanosToTicks(nanos)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Convert the supplied nanosecond to number of ticks given the current tick rate of this clock (but ignoring the speed property).

	Parameters:	nanos – nanoseconds value

	Returns:	number of ticks equivalent to the supplied nanosecond value

	
notify(cause)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Call to notify this clock that the clock on which it is based (its parent) has changed relative to the underlying timing source.

	Parameters:	cause – The clock that is calling this method.

Will notify all dependents of this clock (entities that have registered themselves by calling bind()).

	
speed[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
	(read/write float [http://docs.python.org/library/functions.html#float]) The speed at which the clock is running.

	Does not change the reported tickRate value, but will affect how ticks are calculated
from parent clock ticks. Default = 1.0 = normal tick rate.

(Documentation inherited from ClockBase)

	
tickRate[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Read the tick rate (in ticks per second) of this clock. The value read is not affected by the value of the speed property.

	
ticks[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	(read only) The tick count for this clock.

(Documentation inherited from ClockBase)

	
toOtherClockTicks(otherClock, ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Converts a tick value for this clock into a tick value corresponding to the timescale of another clock.

	Parameters:	
	otherClock – A clock object representing another clock.

	ticks – A time (tick value) for this clock

	Returns:	The tick value of the otherClock that represents the same moment in time.

	Throws NoCommonClock:

		if there is no common ancestor clock (meaning it is not possible to convert

	
toParentTicks(ticks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	
Method to convert from a tick value for this clock to the equivalent tick value (representing the same point in time) for the parent clock.

Implementations should use the parent clock’s tickRate and speed properties when performing the conversion.

	returns:	The specified tick value of this clock converted to the timescale of the parent clock.

	throws StopIteration:

		if this clock has no parent

(Documentation inherited from ClockBase)

	
unbind(dependent)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/clock.py]

	Unbind from notification if this clock changes.

	Parameters:	dependent – The dependent to unbind from receiving notifications.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	Clocks, Time and Scheduling modules

Task scheduling for clocks

Module: dvbcss.task

	Introduction

	Example

	Functions

Introduction

The dvbcss.task module provides sleep and scheduling functions for use with the dvbcss.clock module.
These functions track adjustments to clocks (such as changes in the tick rate or tick value/offset)
to ensure that the sleep or scheduled event happen when the clock actually reaches the target
tick count value.

To use this module, just import it and directly call the functions sleepFor(), sleepUntil(),
scheduleEvent() or runAt().

Note

Scheduling happens on a single thread, so if you use the runAt() function, try to keep the callback code
as fast and simple as possible, so that it returns control as quickly as possible.

See How the dvbcss.task module works internally for information on how the internals of the Task module work.

Example

A simple example:

from dvbcss.clock import SysClock
from dvbcss.clock import CorrelatedClock
from dvbcss.task import sleepFor, runAt

s = SysClock()
c = CorrelatedClock(parentClock=s, tickRate=1000)

wait 1 second
sleepFor(c, numTicks=1000)

schedule callback in 5 seconds
def foo(message):
 print "Callback!", message

runAt(clock=c, whenTicks=c.ticks+5000, foo, "Tick count progressed by 5 seconds")

... but change the correlation to make the clock jump 1 second forward
causing the callback to happen one second earlier
c.correlation = (c.correlation[0], c.correlation[1] + 1000)

... the callback will now happen in 4 seconds time instead

Functions

	
dvbcss.task.sleepUntil(clock, whenTicks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Sleep until the specified clock reaches the specified tick value.

	Parameters:	
	clock – (dvbcss.clock.ClockBase) Clock to sleep against the ticks of.

	whenTicks – (int) The tick value of the clock at which this function returns.

Returns after the specified tick value is reached.

	
dvbcss.task.sleepFor(clock, numTicks)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Sleep for the number of ticks of the specified clock.

	Parameters:	
	clock – (dvbcss.clock.ClockBase) Clock to sleep against the ticks of.

	numTicks – (int) The number of ticks to sleep for.

Returns after the elapsed number of ticks of the specified clock have passed.

	
dvbcss.task.scheduleEvent(clock, whenTicks, event)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Schedule the threading.Event [http://docs.python.org/library/threading.html#threading.Event] to be called when the specified clock reaches (or passes) the specified tick value.

	Parameters:	
	clock – (dvbcss.clock.ClockBase) Clock to schedule the event against

	whenTicks – (int) The tick value of the clock at which the event is to be triggered.

	event – (threading.Event [http://docs.python.org/library/threading.html#threading.Event]) python Event object that the :method:threading.Event.set method will be called on at the scheduled time

	
dvbcss.task.runAt(clock, whenTicks, callBack, args=None, kwargs=None)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Call the specified callback function when the specified clock reaches (or passes) the specified tick value.

The callback happens on the single thread used within the clock scheduling system. You should avoid writing
code that hogs this thread to do substantial processing.

	Parameters:	
	clock – (dvbcss.clock.ClockBase) Clock to schedule the callback against

	whenTicks – (int) The tick value of the clock at which the callback is to be called.

	callback – (callable) Function to be called

	args – A list [http://docs.python.org/library/functions.html#list] of positional arguments to be passed to the callback function when it is called.

	kwargs – A dict [http://docs.python.org/library/stdtypes.html#dict] of keyword arguments to be pased to the callback function when it is called.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

Internal implementation details

	Protocol server implementation details

	How the dvbcss.task module works internally

Here are some details on parts of the internal implementation of aspects of this library.

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	Internal implementation details

Protocol server implementation details

	CSS-WC
	Overview

	Classes

	CSS-CII and CSS-TS
	Overview

	Classes

CSS-WC

Overview

The CSS-WC server is based on a simple generic framework for building UDP servers

Classes

CSS-CII and CSS-TS

Module: dvbcss.protocol.server

Overview

The CSS-CII and CSS-TS servers subclass the WebSocket server functionality for cherrypy implemented
by ws4py in the cherrypyserver [https://ws4py.readthedocs.org/en/latest/sources/ws4py.server/#module-ws4py.server.cherrypyserver] module.

CIIServer and TSServer both inherit from a common base implementation
WSServerTool provided in the dvbcss.protocol.server module.

The Tool provides the hook into cherrypy for handling the connection request and upgrading it to a
WebSocket connection, spawning an object representing the WebSocket connection and which implements
the WebSocket protocols.

The base server object class is intended to manage all WebSocket connections for a particular server
endpoint. It therefore provides its own customised WebScoket class that is bound to that particular
server object instance.

The tool is enabled via an “on” configuration when setting up the mount point in cherrypy.
The tool also expects to a “handler_cls” property set in the configuration at the mount point.
This property points to a WebSocket class which can be instantiated to handle the connection.

Example usage: creating a server at “ws://<host>:80/endpoint” just using the base classes provided here:

import cherrypy
from ws4py.server.cherrypyserver import WebSocketPlugin
from dvbcss.protocol.server import WSServerBase, WSServerTool

plug the tool into cherrypy as "my_server"
cherrypy.tools.my_server = WSServerTool()

WebSocketPlugin(cherrypy.engine).subscribe()

create my server
myServer = WSServerBase()

bind it to the URL path /endpoint in the cherrypy server
class Root(object):
 @cherrypy.expose
 def endpoint(self):
 pass

cfg = {"/endpoint": {'tools.my_server.on': True,
 'tools.my_server.handler_cls': myServer.handler
 }
 }

cherrypy.tree.mount(Root(), "/", config=cfg)

activate cherrypy web server on port 80
cherrypy.config.update({"server.socket_port":80})
cherrypy.engine.start()

See documentation for WSServerBase for information on creating subclasses to implement specific endpoints.

Classes

	
class .WebSocketHandler(WebSocket)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/server.py]

	This class is created and returned by the WSServerBase._makeHandlerClass() method
and each class returned is bound to the instance of WSServerBase that created it.

It is intended to be provided to cherrypy as the “handler_cls” configuration parameter for the WebSocket tool.
It is instantiated for every connection made.

These are subclasses of the ws4py WebSocket [https://ws4py.readthedocs.org/en/latest/sources/ws4py/#ws4py.websocket.WebSocket] class and represent an individual WebSocket connection.

Instances of this class call through to WSServerBase._addConnection() and WSServerBase._removeConnection()
and WSServerBase._receivedMessage() to inform the parent server of the WebSocket opening, closing and receiving messages.

	
classmethod isEnabled(cls)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/server.py]

	

	Returns:	True if the server endpoint is enabled, otherwise False.

	
classmethod canAllocateConnection(cls)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/server.py]

	

	Returns:	True only if the connection limit of the parent server has not yet been reached. Otherwise False.

	
id(self)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/protocol/server.py]

	

	Returns:	A human readable connection ID

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pydvbcss 0.3-release documentation

 	Internal implementation details

How the dvbcss.task module works internally

Introduction

The dvbcss.task module internally implements a task scheduler based around a single daemon thread with an internal priority queue.

Sleep and callback methods cause a task objet to be queued. The scheduler picks up the queued task and adds it to the priority queue and
binds to the Clock so that it is notified of adjustments to the clock. When a task is added to the queue, the clock is queried to calculate
the true time at which the tick count is expected to be reached by calling dvbcss.clock.ClockBase.calcWhen()

If a clock is adjusted the affected tasks are marked as deprecated (but remain in the priority queue) and new tasks are scheduled with a
recalculated time.

Objects

	
dvbcss.task.scheduler = <dvbcss.task._Scheduler object>[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Task scheduler. Starts an internal threading.Thread [http://docs.python.org/library/threading.html#threading.Thread] with theading.Thread.daemon set to True.

This is an internal of the Task module. For normal use you should not need to access it.

	Variables:	
	taskheap – the priority queue of tasks

	addQueue – threadsafe queue of tasks to be added to the priority queue

	rescheduleQueue – thereadsafe queue of clocks that have been adjusted and therefore which need to trigger rescheduling of tasks

	updateEvent – theading.Event used to wake the scheduler thread whenever there is work pending (items added to addQueue or rescheduleQueue)

	clock_Tasks – mapping of clocks to takss that depend on them

Running instance of the dvbcss.task._Scheduler

Classes

	
class dvbcss.task._Scheduler(*args, **kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Task scheduler. Starts an internal threading.Thread [http://docs.python.org/library/threading.html#threading.Thread] with theading.Thread.daemon set to True.

This is an internal of the Task module. For normal use you should not need to access it.

	Variables:	
	taskheap – the priority queue of tasks

	addQueue – threadsafe queue of tasks to be added to the priority queue

	rescheduleQueue – thereadsafe queue of clocks that have been adjusted and therefore which need to trigger rescheduling of tasks

	updateEvent – theading.Event used to wake the scheduler thread whenever there is work pending (items added to addQueue or rescheduleQueue)

	clock_Tasks – mapping of clocks to takss that depend on them

Starts the scheduler thread at initialisation.

	
notify(causeClock)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Callback entry point for when a clock is adjusted

	Parameters:	causeClock – (dvbcss.clock.ClockBase) The clock that was adjusted and is therefore causing this notification of adjustment.

	
run()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Main runloop of the scheduler.

While looping:

	Checks the queue of tasks to be added to the scheduler

The time the task is due to be executed is calculated and used
as the sort key when the task is inserted into a priority queue.

	Checks any queued requests to reschedule tasks (due to clock adjustments)

The existing task in the scheduler priority queue is “deprecated”
And a new task is scheduled with the revised time of execution

	checks any tasks that need to now be executed

Dequeues them and executes them, or ignores them if they are marked as deprecated

	
schedule(clock, whenTicks, callBack, args, kwargs)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Queue up a task for scheduling

	Parameters:	
	clock – (dvbcss.clock.ClockBase) the clock against which the task is scheduled

	whenTicks – (int) The tick value of the clock at which the scheduled task is to be executed

	callback – (func) The function (the task) that will be called at the scheduled time

	args – (list) List of arguments to be passed to the function when it is invoked

	kwargs – (dict) Dictionary of keyword arguments to be passed to the function when it is invoked

	
stop()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Stops the scheduler if it is running.

	
class dvbcss.task._Task(clock, whenTicks, callBack, args, kwargs, n=0)[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Representation of a scheduled task. This is an internal of the Task module. For normal use you should
not need to acess it.

Initialiser

	Parameters:	
	clock – (dvbcss.clock.ClockBase) the clock against which the task is scheduled

	whenTicks – (int) The tick value of the clock at which the scheduled task is to be executed

	callback – (func) The function (the task) that will be called at the scheduled time

	args – (list) List of arguments to be passed to the function when it is invoked

	kwargs – (dict) Dictionary of keyword arguments to be passed to the function when it is invoked

	n – (int) Generation count. Incremented whenever the task is based on a previous task (i.e. it is a rescheduled task)

	
regenerateAndDeprecate()[source] [https://github.com/BBC/pydvbcss/tree/master/dvbcss/task.py]

	Sets the deleted flag of this task to True, and returns a new task the same as this one
but not deleted and with the scheduled time ‘when’ recalculated from the clock

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	pydvbcss 0.3-release documentation

 Python Module Index

 d |
 e

 			

 		
 d	

 	[image: -]
 	
 dvbcss	

 	
 	
 dvbcss.clock	

 	
 	
 dvbcss.monotonic_time	

 	
 	
 dvbcss.protocol	

 	
 	
 dvbcss.protocol.cii	

 	
 	
 dvbcss.protocol.client.cii	

 	
 	
 dvbcss.protocol.client.ts	

 	
 	
 dvbcss.protocol.client.wc	

 	
 	
 dvbcss.protocol.client.wc.algorithm	

 	
 	
 dvbcss.protocol.server	

 	
 	
 dvbcss.protocol.server.cii	

 	
 	
 dvbcss.protocol.server.ts	

 	
 	
 dvbcss.protocol.server.wc	

 	
 	
 dvbcss.protocol.ts	

 	
 	
 dvbcss.protocol.wc	

 	
 	
 dvbcss.task	

 			

 		
 e	

 	[image: -]
 	
 examples	

 	
 	
 examples.CIIClient	

 	
 	
 examples.CIIServer	

 	
 	
 examples.TSClient	

 	
 	
 examples.TSServer	

 	
 	
 examples.TVDevice	

 	
 	
 examples.WallClockClient	

 	
 	
 examples.WallClockServer	

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	pydvbcss 0.3-release documentation

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

Symbols

 	

 	.WebSocketHandler (class in dvbcss.protocol.server)

_

 	

 	_Scheduler (class in dvbcss.task)

 	

 	_Task (class in dvbcss.task)

A

 	

 	accuracy (dvbcss.protocol.cii.TimelineOption attribute)

 	actual (dvbcss.protocol.ts.AptEptLpt attribute)

 	adjustTicks() (dvbcss.clock.TunableClock method)

 	

 	allProperties() (dvbcss.protocol.cii.CII class method)

 	AptEptLpt (class in dvbcss.protocol.ts)

B

 	

 	bind() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

C

 	

 	calcWhen() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	canAllocateConnection() (dvbcss.protocol.server..WebSocketHandler class method)

 	Candidate (class in dvbcss.protocol.wc)

 	CII (class in dvbcss.protocol.cii)

 	ClockBase (class in dvbcss.clock)

 	combine() (dvbcss.protocol.cii.CII method)

 	contentId (dvbcss.protocol.cii.CII attribute)

 	contentIdStatus (dvbcss.protocol.cii.CII attribute)

 	

 	contentIdStem (dvbcss.protocol.ts.SetupData attribute)

 	contentTime (dvbcss.protocol.ts.Timestamp attribute)

 	ControlTimestamp (class in dvbcss.protocol.ts)

 	copy() (dvbcss.protocol.cii.CII method)

 	

 	(dvbcss.protocol.wc.WCMessage method)

 	CorrelatedClock (class in dvbcss.clock)

 	correlation (dvbcss.clock.CorrelatedClock attribute)

 	correlation1 (dvbcss.clock.RangeCorrelatedClock attribute)

 	correlation2 (dvbcss.clock.RangeCorrelatedClock attribute)

D

 	

 	decode() (dvbcss.protocol.cii.TimelineOption class method)

 	definedProperties() (dvbcss.protocol.cii.CII method)

 	diff() (dvbcss.protocol.cii.CII class method)

 	dvbcss.clock (module)

 	dvbcss.monotonic_time (module)

 	dvbcss.protocol (module)

 	dvbcss.protocol.cii (module)

 	dvbcss.protocol.client.cii (module)

 	dvbcss.protocol.client.ts (module)

 	

 	dvbcss.protocol.client.wc (module)

 	dvbcss.protocol.client.wc.algorithm (module)

 	dvbcss.protocol.server (module)

 	dvbcss.protocol.server.cii (module)

 	dvbcss.protocol.server.ts (module)

 	dvbcss.protocol.server.wc (module)

 	dvbcss.protocol.ts (module)

 	dvbcss.protocol.wc (module)

 	dvbcss.task (module)

E

 	

 	earliest (dvbcss.protocol.ts.AptEptLpt attribute)

 	encode() (dvbcss.protocol.cii.TimelineOption class method)

 	encodePrecision() (dvbcss.protocol.wc.WCMessage class method)

 	examples (module)

 	examples.CIIClient (module)

 	examples.CIIServer (module)

 	

 	examples.TSClient (module)

 	examples.TSServer (module)

 	examples.TVDevice (module)

 	examples.WallClockClient (module)

 	examples.WallClockServer (module)

F

 	

 	fromParentTicks() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

G

 	

 	getEffectiveSpeed() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	getMaxFreqError() (dvbcss.protocol.wc.WCMessage method)

 	

 	getParent() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	getPrecision() (dvbcss.protocol.wc.WCMessage method)

I

 	

 	id() (dvbcss.protocol.server..WebSocketHandler method)

 	isEnabled() (dvbcss.protocol.server..WebSocketHandler class method)

 	

 	isNanos (dvbcss.protocol.wc.Candidate attribute)

L

 	

 	latest (dvbcss.protocol.ts.AptEptLpt attribute)

M

 	

 	maxFreqError (dvbcss.protocol.wc.Candidate attribute)

 	

 	(dvbcss.protocol.wc.WCMessage attribute)

 	measurePrecision() (in module dvbcss.clock)

 	mrsUrl (dvbcss.protocol.cii.CII attribute)

 	

 	msg (dvbcss.protocol.wc.Candidate attribute)

 	msgtype (dvbcss.protocol.wc.WCMessage attribute)

N

 	

 	nanos (dvbcss.clock.ClockBase attribute)

 	

 	(dvbcss.clock.CorrelatedClock attribute)

 	(dvbcss.clock.RangeCorrelatedClock attribute)

 	(dvbcss.clock.SysClock attribute)

 	(dvbcss.clock.TunableClock attribute)

 	nanosToTicks() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	

 	notify() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	(dvbcss.task._Scheduler method)

O

 	

 	offset (dvbcss.protocol.wc.Candidate attribute)

 	OMIT (in module dvbcss.protocol)

 	

 	originalOriginate (dvbcss.protocol.wc.WCMessage attribute)

 	originateNanos (dvbcss.protocol.wc.WCMessage attribute)

P

 	

 	pack() (dvbcss.protocol.cii.CII method)

 	

 	(dvbcss.protocol.cii.TimelineOption method)

 	(dvbcss.protocol.ts.AptEptLpt method)

 	(dvbcss.protocol.ts.ControlTimestamp method)

 	(dvbcss.protocol.ts.SetupData method)

 	(dvbcss.protocol.wc.WCMessage method)

 	precision (dvbcss.protocol.wc.Candidate attribute)

 	

 	(dvbcss.protocol.wc.WCMessage attribute)

 	presentationStatus (dvbcss.protocol.cii.CII attribute)

 	

 	private (dvbcss.protocol.cii.CII attribute)

 	

 	(dvbcss.protocol.cii.TimelineOption attribute)

 	(dvbcss.protocol.ts.SetupData attribute)

 	protocolVersion (dvbcss.protocol.cii.CII attribute)

R

 	

 	RangeCorrelatedClock (class in dvbcss.clock)

 	rebaseCorrelationAtTicks() (dvbcss.clock.CorrelatedClock method)

 	receiveNanos (dvbcss.protocol.wc.WCMessage attribute)

 	regenerateAndDeprecate() (dvbcss.task._Task method)

 	

 	rtt (dvbcss.protocol.wc.Candidate attribute)

 	run() (dvbcss.task._Scheduler method)

 	runAt() (in module dvbcss.task)

S

 	

 	schedule() (dvbcss.task._Scheduler method)

 	scheduleEvent() (in module dvbcss.task)

 	scheduler (in module dvbcss.task)

 	setMaxFreqError() (dvbcss.protocol.wc.WCMessage method)

 	setPrecision() (dvbcss.protocol.wc.WCMessage method)

 	SetupData (class in dvbcss.protocol.ts)

 	sleep() (in module dvbcss.monotonic_time)

 	

 	sleepFor() (in module dvbcss.task)

 	sleepUntil() (in module dvbcss.task)

 	slew (dvbcss.clock.TunableClock attribute)

 	speed (dvbcss.clock.ClockBase attribute)

 	

 	(dvbcss.clock.CorrelatedClock attribute)

 	(dvbcss.clock.RangeCorrelatedClock attribute)

 	(dvbcss.clock.SysClock attribute)

 	(dvbcss.clock.TunableClock attribute)

 	stop() (dvbcss.task._Scheduler method)

 	SysClock (class in dvbcss.clock)

T

 	

 	t1 (dvbcss.protocol.wc.Candidate attribute)

 	t2 (dvbcss.protocol.wc.Candidate attribute)

 	t3 (dvbcss.protocol.wc.Candidate attribute)

 	t4 (dvbcss.protocol.wc.Candidate attribute)

 	teUrl (dvbcss.protocol.cii.CII attribute)

 	tickRate (dvbcss.clock.ClockBase attribute)

 	

 	(dvbcss.clock.CorrelatedClock attribute)

 	(dvbcss.clock.RangeCorrelatedClock attribute)

 	(dvbcss.clock.SysClock attribute)

 	(dvbcss.clock.TunableClock attribute)

 	ticks (dvbcss.clock.ClockBase attribute)

 	

 	(dvbcss.clock.CorrelatedClock attribute)

 	(dvbcss.clock.RangeCorrelatedClock attribute)

 	(dvbcss.clock.SysClock attribute)

 	(dvbcss.clock.TunableClock attribute)

 	time() (in module dvbcss.monotonic_time)

 	TimelineOption (class in dvbcss.protocol.cii)

 	timelines (dvbcss.protocol.cii.CII attribute)

 	timelineSelector (dvbcss.protocol.cii.TimelineOption attribute)

 	

 	(dvbcss.protocol.ts.SetupData attribute)

 	timelineSpeedMultiplier (dvbcss.protocol.ts.ControlTimestamp attribute)

 	timeMicros() (in module dvbcss.monotonic_time)

 	

 	timeNanos() (in module dvbcss.monotonic_time)

 	Timestamp (class in dvbcss.protocol.ts)

 	timestamp (dvbcss.protocol.ts.ControlTimestamp attribute)

 	toOtherClockTicks() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	toParentTicks() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	toTicks() (dvbcss.protocol.wc.Candidate method)

 	transmitNanos (dvbcss.protocol.wc.WCMessage attribute)

 	tsUrl (dvbcss.protocol.cii.CII attribute)

 	TunableClock (class in dvbcss.clock)

 	TYPE_FOLLOWUP (dvbcss.protocol.wc.WCMessage attribute)

 	TYPE_REQUEST (dvbcss.protocol.wc.WCMessage attribute)

 	TYPE_RESPONSE (dvbcss.protocol.wc.WCMessage attribute)

 	TYPE_RESPONSE_WITH_FOLLOWUP (dvbcss.protocol.wc.WCMessage attribute)

U

 	

 	unbind() (dvbcss.clock.ClockBase method)

 	

 	(dvbcss.clock.CorrelatedClock method)

 	(dvbcss.clock.RangeCorrelatedClock method)

 	(dvbcss.clock.SysClock method)

 	(dvbcss.clock.TunableClock method)

 	unitsPerSecond (dvbcss.protocol.cii.TimelineOption attribute)

 	unitsPerTick (dvbcss.protocol.cii.TimelineOption attribute)

 	

 	unpack() (dvbcss.protocol.cii.CII class method)

 	

 	(dvbcss.protocol.cii.TimelineOption class method)

 	(dvbcss.protocol.ts.AptEptLpt class method)

 	(dvbcss.protocol.ts.ControlTimestamp class method)

 	(dvbcss.protocol.ts.SetupData class method)

 	(dvbcss.protocol.wc.WCMessage class method)

 	update() (dvbcss.protocol.cii.CII method)

W

 	

 	wallClockTime (dvbcss.protocol.ts.Timestamp attribute)

 	WCMessage (class in dvbcss.protocol.wc)

 	

 	wcUrl (dvbcss.protocol.cii.CII attribute)

 Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

 _images/wc-request-response.png
CLIENT SERVER

h

e
t2
/ t3
t4

_images/range-correlated-clock.png
oA
OO
= O
(@)
©
o
-
o
()
-
o)
(@)
o
(@))]
C
©
>

correlationt

correlation2

A

current
tick value

—P>
ticks
(parent clock)

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pydvbcss 0.3-release documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, British Broadcasting Corporation.
 Last updated on Feb 21, 2016.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_images/correlated-clock-speed-change-issue.png
speed change causes the correlated clock current tick value to
jump depending on distance from point of correlation

2%4
o 8 -
= O e
O Pt
g,
o ed
© \66\36
) o)
=
o)
L 3 T
o -
new SP°
T correlation
A ticks
(parent clock)
current

tick value

_images/correlated-clock.png
0w <A
0

3

© dy tickRate " speed

% dx parent.tickRate

L dy

dx
correlation (x, y)

- = (parent tick value, correlated clock tick value)

—P>
ticks
(parent clock)

